• Title/Summary/Keyword: Actuator Failure

Search Result 123, Processing Time 0.02 seconds

The Evaluation of Structural Safety of Impeller Using FEM Simulation (FEM 시뮬레이션을 이용한 임펠러의 구조 안전성 평가)

  • Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.41-47
    • /
    • 2020
  • As modern industries are highly being developed, it is required that mechanical parts have to be manufactured with a high precision. In order to have precise parts, error-free designs have to be done before manufacturing with accuracy. For this intention being fulfilled, a mechanical analysis is essential for design proof. Nowadays, FEM simulation is a popular tool for verifying a machine design. In this paper, an impeller, being utilized in a compressor or an oil mixer as an actuator, is studied for an evaluation. The purpose of this study is to present a safety of an impeller for a proof of its mechanical stability. A static analysis for stress, strain, and deformation within a regular usage is examined. This simulation test shows 357.26×106 Pa for maximum equivalent stress and 0.207mm for total deformation. A fatigue test is carried to provide durability and its result shows that minimum safety factor is 3.2889, which guarantees that it runs without a fatigue failure in 106 cycles. The natural frequencies for the impeller is ranged from 228.09Hz to 1,253.6Hz for the 1st to the 6th mode. Total deformations at these natural frequencies are shown from 6.84mm to 12.631mm. Furthermore, Campbell diagram reveals that a critical speed is not found throughout regular rotational speeds. From the test results for the analysis, this paper concludes that the suggested impeller is proved for its mechanical safety and good to utilize at industries.

Experiments on Flexural Performance of Composite Members Strengthened by External Steel Plates (외부 강재 보강으로 구성한 합성 부재의 휨 성능에 대한 실험)

  • Hwang, Byung-Hun;Shin, Jin-Won;Jeon, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.143-150
    • /
    • 2022
  • This paper presents an experimental study on the flexural performance of concrete members strengthened with external steel plates for the purpose of improving seismic performance. In order to strengthen the structure, a strengthening method was applied that wraps the walls and columns with steel members. The partial section of the wall with the longest span in the structure was manufactured in real size and the strengthening effect was confirmed by performing a static load test. As a result of the experiment, it was confirmed that the strengthened section exhibited sufficient flexural performance satisfied to the seismic requirements, but the behavior until failure was not obtained because of actuator capacity. It was confirmed that the strengthened member resists the out-of-plane moment with a composite behavior. It was verified that the stiffness and load carrying capacity of the strengthened member were improved compared to the non-strengthened member by displacement and strain measurements.

A Study for Lifespan Prediction of Expansion by Temperature Status (온도상태에 따른 신축관 이음의 수명예측에 관한 연구)

  • Oh, Jung-Soo;Lee, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.424-429
    • /
    • 2018
  • In this study, an expansion joint that is susceptible to waterhammer was tested for its vibration durability. The operation data for the hydraulic actuator was the expansion length of the expansion joint when the waterhammer occurred. In the case of the vibration durability test, the internal temperature status of the expansion joint was assumed to be a stress factor and a lifespan prediction model was assumed to follow the Arrhenius model. A test was carried out by increasing the internal temperature status at $30^{\circ}C$, $50^{\circ}C$, and $65^{\circ}C$. By a linear transformation of the lifespan data for each temperature, a constant value and activation energy coefficient was induced for the Arrhenius equation and verified by comparing the value of a lifetime prediction model with the experimental value at $85^{\circ}C$. The failure modes of the ongoing or finished test were leakage, bellows separation, and internal deformation. In the future, a composite lifespan prediction model, including two more stress factors, will be developed.