• 제목/요약/키워드: Actuator Control

검색결과 2,159건 처리시간 0.033초

능동진동제어를 위한 선형 자기 액츄에이터 개발 (Development of Linear Magnetic Actuator for Active Vibration Control)

  • 이행우;관문규;김기영;이한동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.587-592
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

  • PDF

Vibration control of a framed structure by an air-pulse actuator

  • Fujimoto, T.;Fengying, Cao;Mori, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.152.3-152
    • /
    • 2001
  • This paper describes an application of an air-pulse actuator for vibration control of a framed structure. Dynamic characteristics of the prototype actuator that utilizes an air-jet reaction force pulsated by an electromagnetic valve were investigated to use it as a control actuator. Using a control law based on the sliding mode control theory, experiments of the vibration control were carried out. The experimental results verified the validity of the actuator performance.

  • PDF

직접속도 피드백을 이용한 보의 능동진동제어 (Active Vibration Control of a Beam using Direct Velocity Feedback)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.587-592
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair, because the sensor-actuator pair has strictly positive real (SPR) property. In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB sho robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a 'skyhook' damper, but the point sensor-distributed actuator pair with DVFB acts as a 'skyhook' rotational dmaper pair.ational dmaper pair.

  • PDF

보의 능동진동제어을 통한 직접속도 피드백의 적용성 연구 (Active Vibration Control of a Beam Using Direct Velocity Feedback)

  • 이영섭
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.619-625
    • /
    • 2004
  • Direct velocity feedback (DVFB) control is known that it offers an unconditional stability with very high performance when the control strategy is applied at a point collocated sensor and actuator pair. because the sensor-actuator pair has strictly positive real (SPR) property In this paper, two types of collocated sensor-actuator pairs are considered for practical active vibration control of a structure. They are a Point collocated sensor-actuator pair and a point sensor-distributed actuator pair. Both pairs with DVFB show robust stability and performance. It is noted that the collocated point sensor-actuator ultimately acts as a “skyhook” damper, hut the point sensor-distributed actuator pair with DVFB acts as a “skyhook” rotational damper pair.

압전작동기를 이용한 레이져 스케닝 미러의 위치제어 (Position Control of Laser Scanning Mirror Using Piezoelectric Actuator)

  • 지학래;김재환;최승복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.442-445
    • /
    • 1995
  • This paper presents the position tracking control of a laser scanning mirror system in which piezoelectic actuator is incorporated. Using the shear mode of the piezoelectric actuator,angular oscillation of a laser scanning mirror is derived. Torsion bar is rhen designed and attached to the piezoelctric actuator in order to magnify the amplitude generated by the actuator. Finite element modeling and analysis are essntial for designing the piezoelectic actuator. The torsional resonance mode of the piezoelectric actuator is found from the model analysis of the actuator and the mechanical shear is matched with the driving frequency. Transfer function between the electrical excitation and the mechanical shear deformation at resonance frequency is found form the response of the actuator calculated by the finite element analysis and the governing equation of the system is derived from d'Alembert's principle. Tracking control performance for desired trajectory which is, in fact, sinusoidal curve is presented in order to demonstrate the validity of the proposed system.

  • PDF

능동진동제어를 위한 선형 자기 액추에이터 개발 (Development of Linear Magnetic Actuator for Active Vibration Control)

  • 이행우;곽문규;김기영;이한동
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.667-672
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

Daisy Chain Method for Control Allocation Based Fault-Tolerant Control

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • 대한임베디드공학회논문지
    • /
    • 제8권5호
    • /
    • pp.265-272
    • /
    • 2013
  • This paper addresses a control allocation method for fault-tolerant control by redistributing redundant control surfaces. The proposed method is based on a classical daisy chain approach for the compensation of faulty actuators. The existing daisy chain method calculates a desired moment according to a number of actuator groups. However, this method has a significant limitation; that is, any faulty actuator belonging to the last actuator group cannot be compensated, since there is no more redundant actuator group that can be used to generate the required moments. In this paper, a modified daisy chain method is proposed to overcome this problem. Using the proposed method, the order of actuator groups is readjusted so that actuator groups containing any faulty actuator are always placed in an upper group instead of the last one. A set of simulation results with an F-18 HARV aircraft demonstrate that the proposed method can achieve better performance than the existing daisy chain method.

쉘 구조물의 진동제어를 위한 분포형 압전 감지기/작동기의 설계 최적화 (Distributed Piezoelectric Sensor /Actuator Optimal Design for Active Vibration Control of Shell Structure)

  • 황준석;목지원;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.154-157
    • /
    • 2000
  • Distributed piezoelectric sensor and actuator system has been designed for the active vibration control of shell structure. PVDF is used for the materials of sensor/actuator. To prevent the adverse effect of spillover, distributed modal sensor/actuator system is established. Although shell structure is three-dimensional structure, the PVDF sensor/actuator system can be treated as two-dimensional Finite element programs are developed to consider curved structures having PVDF modal sensor/actuator. The nine-node Mindlin shell element with five nodal degree of freedoms is used for finite element discretization. The electrode patterns and lamination angle of PVDF sensor/actuator are optimized to design the modal sensor/actuator system Genetic algorithm is used for optimization. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and second modes of singly curved cantilevered shell structure are designed using mentioned methods. Discrete LQG method is used as a control law. Experimental demonstrations of the active vibration control with designed sensor/actuator system have been performed successfully.

  • PDF

Active Vibration Control of Composite Shell Structure using Modal Sensor/Actuator System

  • Kim, Seung-Jo;Hwang, Joon-Seok;Mok, Ji-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.106-117
    • /
    • 2006
  • The active vibration control of composite shell structure has been performed with the optimized sensor/actuator system. For the design of sensor/actuator system, a method based on finite element technique is developed. The nine-node Mindlin shell element has been used for modeling the integrated system of laminated composite shell with PVDF sensor/actuator. The distributed selective modal sensor/actuator system is established to prevent the effect of spillover. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Continuous electrode patterns are discretized according to finite element mesh, and orientation angle is encoded into discrete values using binary string. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and the second mode vibration control of singly curved cantilevered composite shell structure are designed with the method developed on the finite element method and optimization. For verification, the experimental test of the active vibration control is performed for the composite shell structure. Discrete LQG method is used as a control law.

관성형 작동기를 이용한 능동 하이브리드 마운트 시스템의 진동제어 성능 평가 (Evaluation of Vibration Control Performance for Active Hybrid Mount System Featuring Inertial Actuator)

  • 오종석;최승복;벤큐오;문석준
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.768-773
    • /
    • 2011
  • This work presents an experimental investigation on vibration control of the active hybrid mount system for naval ships. To reduce unwanted vibrations, this paper proposes an active mount which consists of rubber element, piezostack actuator and inertial mass. The rubber element supports a mass. The piezostack actuator generates a proper control force and supply it to the mount system. To avoid being broken piezostack actuator, an actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is positioned between inertial mass and rubber element. Vibration control performances of the active mount system are evaluated via experiment. To attenuate the unwanted vibrations transferred from upper mass, the feedforward control is designed. In order to implement a control experiment, the active mount system supported by four active mounts is constructed. For realization of the controller, one-chip board is manufactured and utilized. Subsequently, vibration control performances of the proposed active mount system are experimentally evaluated in frequency domains.