• Title/Summary/Keyword: Actuator Capacity

Search Result 109, Processing Time 0.022 seconds

An investigation into energy harvesting and storage to power a more electric regional aircraft

  • Saleh, Ahmed;Lekakou, Constantina;Doherty, John
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • This is an investigation for a more electric regional aircraft, considering the ATR 72 aircraft as an example and the electrification of its four double slotted flaps, which were estimated to require an energy of 540 Wh for takeoff and 1780 Wh for landing, with a maximum power requirement of 35.6 kW during landing. An analysis and evaluation of three energy harvesting systems has been carried out, which led to the recommendation of a combination of a piezoelectric and a thermoelectric harvesting system providing 65% and 17%, respectively, of the required energy for the actuators of the four flaps. The remaining energy may be provided by a solar energy harvesting photovoltaic system, which was calculated to have a maximum capacity of 12.8 kWh at maximum solar irradiance. It was estimated that a supercapacitor of 232 kg could provide the energy storage and power required for the four flaps, which proved to be 59% of the required weight of a lithium iron phosphate (LFP) battery while the supercapacitor also constitutes a safer option.

A study on calculation of friction coefficient and packing stress using static diagnosis test for a balanced globe valve in nuclear power plants

  • Kim, Jaehyung;Lim, Taemook;Ryu, Ho-Geun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2509-2522
    • /
    • 2021
  • A valve assembly used in nuclear power plants must be qualified and supervised. New technical standards such as ASME QME-1 2007 particularly require detailed qualification using experiment and analysis. Particularly, diagnostic tests and engineering studies are required for qualification of ASME QME-1 2007. Among these studies, the research on the measurement of friction coefficient and packing stress is important. The irregular change of packing stress along the stroke distance occurs because of the abnormal phenomenon, which must be found and studied with quantitative methods. Packing stress should be analyzed conservatively through experimentation and analysis. In this study, various formulas were applied to measure and calculate coefficient of friction and packing stress. This study can be used in relation to qualification and supervision of packing materials. And the calculation using static diagnosis test can be used to find the packing frictional force in dynamic diagnosis test with flow pressure in a pipe. This study has made it possible to reliably consider packing frictional force generated in a valve body. And so, it is believed that more margin can be secured when evaluating the capacity of valve actuator by applying the accurate frictional force generated in the valve assembly.

Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers

  • Feng, Qian;Kong, Qingzhao;Tan, Jie;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • The load-carrying capacity and structural behavior of concrete-filled steel tube (CFST) structures is highly influenced by the grouting compactness in the steel tube. Due to the invisibility of the grout in the steel tube, monitoring of the grouting progress in such a structure is still a challenge. This paper develops an active sensing approach with combined piezoceramic-based smart aggregates (SA) and piezoceramic patches to monitor the grouting compactness of CFST bridge structure. A small-scale steel specimen was designed and fabricated to simulate CFST bridge structure in this research. Before casting, four SAs and two piezoceramic patches were installed in the pre-determined locations of the specimen. In the active sensing approach, selected SAs were utilized as actuators to generate designed stress waves, which were detected by other SAs or piezoceramic patch sensors. Since concrete functions as a wave conduit, the stress wave response can be only detected when the wave path between the actuator and the sensor is filled with concrete. For the sake of monitoring the grouting progress, the steel tube specimen was grouted in four stages, and each stage held three days for cement drying. Experimental results show that the received sensor signals in time domain clearly indicate the change of the signal amplitude before and after the wave path is filled with concrete. Further, a wavelet packet-based energy index matrix (WPEIM) was developed to compute signal energy of the received signals. The computed signal energies of the sensors shown in the WPEIM demonstrate the feasibility of the proposed method in the monitoring of the grouting progress.

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration (컨베이어 진동을 이용한 IDE 적층 압전 캔틸레버 발전 소자의 무선 센서 응용 연구)

  • Kim, Chang-il;Lee, Min-seon;Cho, Jung-ho;Paik, Jong-hoo;Jang, Yong-ho;Choi, Beom-jin;Son, Cheon-myoung;Seo, Duk-gi;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.769-775
    • /
    • 2016
  • Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.

Development of a Tractor Attached Round Bale Wrapper(I) -Analysis of wrapping process and development of operating system- (트랙터 견인형 원형 베일 랩퍼의 개발(I) -랩핑 작업공정 분석 및 작업 시스템의 개발-)

  • Park, K. K.;Kim, H. J,;Kim, C. S.;Kim, J. Y.;Kim, J. H.;Jang, C.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • One of the major obstructing factors against managing dairy farm in Korea has been a shortage of roughage supply, which resulted in excessive abuse of concentrate feed. In order to solve this problem, production of the wrap silage by the winter cereal forages raised in the fallow paddy field is strongly recommended in Korea. The main objective is to develop a tractor attached round bale wrapper which can process the silage by wrapping the round bales with thin plastic films. This is the first half of the study which is divided by two parts. In this first part, bale wrapping process was analyzed, and based on this results the followings were designed, developed and tested. 1. Bale wrapper which haying the maximum capacity of 1 ton bale with various functions such as loading, wrapping, discharging the round bales and supplying and cutting wrap films was designed. 2. An actuator and its hydraulic circuit of each process were developed and tested. 3. Also, the variations of hydraulic pressure and engine speed were investigated by operating bale wrapper developed. In this test, maximum pressure of the hydraulic circuit for the bale wrapping was 130 kg/㎠ when it raised the bale, which was quite below the relief pressure of 170 kg/㎠ of hydraulic circuit. In the engine speed test, speed drop was 20∼67 rpm, which meant that there was no over-load operation. Therefore, the experiment proved that developed hydraulic circuit and mechanism is stable in bale wrapping operation

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

A Study on the Integration of Motor - Transmission for Commercial Electric Vehicle (상용전기자동차용 모터-변속기 일체화에 관한 연구)

  • Oh, Se-Hoon;Youm, Kwang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2019
  • Owing to the present problems of air pollution and fossil fuel exhaustion, ongoing research has been actively focused on developing an electric actuator system that can utilize diverse energy sources without producing any exhaust gas. Since the motors of such electric vehicles generally rotate at a high speed, the initial acceleration capability required for an automobile is insufficient. In this study, the motor output was decelerated by the transmission; the initial acceleration of the vehicle was increased, and the motor size and weight were reduced. The driving motor and transmission, which each form isolated structures, were integrated to simplify the connector for input and output. By reducing the cooling system's capacity, a vehicle was designed and manufactured that represents a structural change in effective technology.

Flexural Behavior of Concrete Beams Reinforced with Fe based Shape Memory Alloy Bar (철계-형상기억합금 바로 제작된 콘크리트 보의 휨 거동)

  • Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2020
  • This paper reports an experimental study to evaluate the flexural behavior of concrete beams reinforced using Fe based shape memory alloy (Fe-SMA) bars. For the experiment, a concrete beam of 200mm×300mm×2,200mm was produced, and a 4% pre-strained Fe-SMA bar was used as a tensile reinforcement. As experimental variables, type of tensile reinforcement (SD400, Fe-SMA), reinforcement ratio (0.2, 0.39, 0.59, 0.78), activation of Fe-SMA (activation, non-activation), and joint method of Fe-SMA bar (Continuous, welding, coupler) were considered. The electric resistance heating method was used to activate the Fe-SMA bar, and a current of 5A/㎟ was supplied until the specimen reached 160℃. After the upward displacement of the specimen due to the camber effect was stabilized, a three-point flexural loading experiment was performed using an actuator of 2,000 kN capacity. As a result of the experiment, it was found that the upward displacement occurred due to the camber effect as the Fe-SMA bar was activated. The specimen that activated the Fe-SMA bar had an initial crack at a higher load than the specimen that did not activate it. However, as with general prestressed concrete, the effect of the prestress by Fe-SMA activation on the ultimate state of the beam was insignificant.