• Title/Summary/Keyword: Actuation

Search Result 756, Processing Time 0.029 seconds

Deflection Prediction of Piezo-composite Unimorph Actuator Considering Material Property Change of Piezoelectric Single Crystal for Compression Stress Variation (압축 응력 변화에 대한 압전 단결정의 물성 변화를 고려한 압전 복합재료 작동기의 작동 변위 예측)

  • Yoon, Bum-Soo;Park, Ji-Won;Yoon, Kwang-Joon;Choi, Hyun-Young
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • In this study, LIPCA-S2 actuator with a piezoelectric single crystal layer and a carbon/epoxy layer was designed and evaluated to increase actuation performance of piezo-composite unimorph actuator. A curvature change model generated by the induced strain of a piezoelectric layer was used to predict the tip displacement of the piezo-composite unimorph cantilever. However, we found that there was big difference between the predicted and the measured tip displacement of LIPCA-S2 cantilever actuator when we used the previous linear prediction model. A new prediction model considering the change of piezoelectric strain coefficient and elastic modulus for the compression stress variation of the PMN-29PT single crystal layer was used and it was found that the difference between the predicted and the measured tip displacement reduced considerably.

Design and Implementation of Clutch-by-wire System for Automated Manual Transmissions (자동화 수동 변속기의 CBW 시스템 개발)

  • Moon, Sang-Eun;Kim, Min-Sung;Yeo, Hoon;Song, Han-Lim;Han, Kwan-Soo;Kim, Hyun-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.119-128
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. This paper describes the dynamic modeling of a clutch actuator and clutch spring. The dynamic model of the clutch system is developed using MATLAB/Simulink, and evaluated by experimental data using a test rig. This performance simulator is useful to develop the clutch-by-wire (CBW) system for an automated manual transmission (AMT). The electro-mechanical type CBW system is also implemented as an automatic clutch for AMT. The prototype of CBW system is designed and implemented systematically, which is composed of an electric motor, worm gear and slider-crank mechanism. The test rig is developed to perform the basic function test of the automatic clutch, and the developed prototype is validated by the experimental data on the test rig.

Development of Lightweight Piezo-composite Curved Actuator (곡면형 압전 복합재료 작동기 LIPCA 개발)

  • Park, Ki-Hoon;Yoon, Kwang-Joon;Park, Hoon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.94-100
    • /
    • 2002
  • This paper is concerned with the development, and performance test of LIPCA (Lightweight Piezo-composite Curved Actuator) that is lighter than other conventional piezo-composite type actuators. LIPCA is composed of top fiber composite layers with a high modulus and low CTE (Coefficient of Thermal Expansion), a middle PZT cermaic wafer, and base layers with a high modulus and high CTE. The performance of each actuator was evaluated using an actuator test system consisting of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. The simply supported condition actuator was excited by the power supplier with 1.0Hz cycle and up to $100\sim400V_{pp}$. The displacement at the center point of actuator was measured with non-contact laser displacement measuring system, It has been shown that the LIPCA-C2 can 34% decrease in mass and 13% increase in displacement compared to THUNDER.

Development of Three D.O.F Alignment Stage for Vacuum Environment (진공용 3자유도 얼라인먼트 스테이지 개발)

  • Han, Sang-Jin;Park, Jong-Ho;Park, Hui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.138-147
    • /
    • 2001
  • Alignment systems are frequently used under various semiconductor manufacturing environment. Particularly in PDP(Plasma Display Panel) manufacturing process, the alignment system is applied to the combining and sealing processes of the upper and lower glass panels of PDP, where these processes are performed in the vacuum chamber of high vacuum and high temperature. In this paper, the XYΘ-alignment stage is developed to align PDP panels. Because of high vacuum and high temperature environment, the alignment chamber has been designed to isolate the inner part of the alignment chamber from the outer environment of high vacuum and high temperature, in which every part of the alignment stage is inserted. As it is difficult to attach feedback sensors to the alignment stage in the alignment chamber, the alignment stage is implemented with the open loop algorithm, where the parallel link structure has been designed using step-motors and ball-screws for structural simplicity. The kinematic analysis is performed to drive the parallel link structure, based on the experiments of actuation-compensation of the alignment stage. For the error compensation, the hyperpatch model has been used to model the errors. From the experiments, the positional accuracy of the alignment stage can be improved significantly.

  • PDF

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.

Modeling and Design of an Active Pressure Regulating Valve(Implant) (녹내장 치료용 능동형 압력조절밸브(Implant) 모델링 및 설계)

  • Bae, Byunghoon;Kim, Nakhoon;Lee, Yeon;Kee, Hongseok;Kim, Seoho;Park Kyihwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.805-815
    • /
    • 2001
  • Glaucoma is an eye disease which is caused by abnormal high IOP (Intra Ocular Pressure). High IOP is caused by the aqueous humor which is produced consistently but not drained due to malfunction of the trabecular system which has a role of draining the aqueous humor into the venous system. Currently, there are three methods to treat glaucoma-using medicines, surgical operation, and using implant device. The first and second methods are not long acting, so the use of implants is increasing in these days in order to drain out the aqueous humor compulsory. However, though conventional implants have a capability of pressure regulation, they cannot maintain IOPs desired for different patients, and too much aqueous humor are usually drained, to cause hypotony. To solve these problems, it is needed to develop a new implant which is capable of controling the IOP actively and copes with personal difference of patients. An active glaucoma implant consists of the valve actuator, pressure sensor, controller, and power supply. In this paper, firstly, we make an analysis of the operation of a conventional implant using a bond graph and show defects and limitations of the conventional valve analytically. Secondly, we design and analyze a valve actuator considering actuation principles, resistance elements, control methods, and energy sources focused on power saving problem. Finally, using simulations the possibility of the proposed valve actuator is investigated.

Microcomputer-controlled Koji Incubation System and Its Application to Barley Koji Manufacture (마이크로컴퓨터 제어(制御) 종국배양장치(種麴培養裝置)와 보리코오지 제조(製造)의 자동화(自動化))

  • Kwon, Young-An;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.326-330
    • /
    • 1988
  • For the automation of Koji incubation process, microcomputer based Koji incubation system was built and applied to acquisition of the process variables, and to control of the Koji incubation process. The incubation variables included the relative humidity and Koji weight. And data measured were sent to the microcomputer by the interface device built with MC 6821 PIA. Incubation environment conditions -temperature and humidity- were controlled by the actuation of heater and mist sprayer with on/off signal generated by ASIC program. Aspergillus oryzae as a starter of the Koji and steamed barley as media were used and Koji was successfully manufactured both at $25^{\circ}C,\;70%$ RH and at $27^{\circ}C,\;80%$ RH. During the Koji preperation, the temperature was linearly increased and substrate was consumed stepwise showing 3 steps in the weight loss curve.

  • PDF

Development of Synthetic Jet Micro Air Pump (Synthetic Jet 마이크로 에어펌프의 개발)

  • Choi, J.P.;Kim, K.S.;Seo, Y.H.;Ku, B.S.;Jang, J.H.;Kim, B.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.594-599
    • /
    • 2008
  • This paper presents a micro air pump based on the synthetic jet to supply reactant at the cathode side for micro fuel cells. The synthetic jet is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. Therefore, it is very important that the design parameters are optimized because of the simple configuration. To design the synthetic jet micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. From results of numerical analysis, the micro air pump has been fabricated by the PDMS replication process. The most important design factors of the micro air pump in micro fuel cells are the small size and low power consumption. To satisfy the design targets, we used SP4423 micro chip that is high voltage output DC-AC converter to control the PZT. The SP4423 micro chips can operate from $2.2{\sim}6V$ power supply(or battery) and is capable of supplying up to 200V signals. So it is possible to make small size controller and low power consumption under 0.1W. The size of micro air pump was $16{\times}13{\times}3mm^3$ and the performance test was conducted. With a voltage of 3V at 800Hz, the air pump's flow rate was 2.4cc/min and its power consumption was only 0.15W.

Start and Stop Characteristics of Single-Rod Electro-Hydrostatic Actuator (전동기 일체형 편로드 유압액추에이터의 기동 및 정지특성해석)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1483-1490
    • /
    • 2011
  • Electro-hydrostatic actuators(EHAs), which are usually composed of a direct motor-driven hydraulic pump and a cylinder, have been widely adopted as aircraft actuation systems because of their benefits in terms of improved efficiency, weight savings and the fact that they use a standalone power source. Since the recent trend in construction vehicles has been focus on energy savings in their hydraulic systems, EHAs are expected to be potential substitutes for conventional power transmission, since they are capable of energy recovery as well as highly efficient pump control. In this paper, the start and stop characteristics of EHAs were investigated through cracking pressure analysis of the pilot-operated check valve(PCV), which enables the cylinder to standstill against an external load with no holding effort from the hydraulic pump. A mathematical model that includes the load dynamics and the EHA's internal hydraulic circuit was derived for simulation with the MATLAB Simulink package. This model verified the PCV's opening and closing sequence, which in turn affects the EHA's start and stop characteristics.

Large-Displacement Electromagnetic Actuators with the Meander Springs Partially Exposed to Magnetic Field (부분적으로 자기장에 노출된 굴곡형 스프링을 이용한 대변위 전자기력 구동기)

  • Seo, Dae-Geon;Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.481-486
    • /
    • 2012
  • We discuss the design, fabrication, and testing of a large-displacement electromagnetic actuator with the meander springs partially exposed to a magnetic field. We compared two prototypes: a prototype (F) of the conventional actuator with the meander springs fully exposed to a magnetic field and a prototype (P) of the proposed actuator with the meander springs partially exposed to a magnetic field. For a 5 Hz square input current varying from 10.40 mA, P showed an increase of $16.9{\pm}1.2%$ in the amplitude, which was greater than the increase in the case of F. Thus, we experimentally demonstrated the large-displacement actuation performance of the proposed actuator in a small volume and at low currents (below 40 mA). The proposed electromagnetic actuator can be used for low-power and large-displacement manipulation of optical switches and optical choppers.