• Title/Summary/Keyword: Actual subsidence

Search Result 40, Processing Time 0.021 seconds

Updated Object Extraction in Underground Facility based on Centroid (중심점 기반 지하시설물 갱신객체 추출 기술)

  • Kim, Kwagnsoo;Lee, Kang Woo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.553-559
    • /
    • 2020
  • In order to prevent subsidence in urban areas, which is a major cause of damage to aging underground facilities, an integrated underground space map is being produced for systematic management of underground facilities. However, there is a problem of delaying the update time because an unupdated underground facility object is included in the process of updating the underground space integrated map. In this paper, we proposed a method to shorten the update time of the integrated map by selecting only the updated objects required for the update process of the underground space integrated map based on the central point of the underground facilities. Through the comparison of the centroid, the number of search targets is greatly reduced to shorten the search speed, and the distance of the actual location values between the two objects is calculated whether or not the objects are the same. The proposed method shows faster performance as the number of data increases, and the updated object can be reflected in the underground space integrated map about four times faster than the existing method.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

A Design and Implementation of Floor Detection Application Using RC Car Simulator (RC카 시뮬레이터를 이용한 바닥 탐지 응용 설계 및 구현)

  • Lee, Yoona;Park, Young-Ho;Ihm, Sun-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.507-516
    • /
    • 2019
  • Costs invested in road maintenance and road development are on the rise. However, due to accidents such as portholes and ground subsidence, the risks to the drivers' safety and the material damage caused by accidents are also increasing. Following this trend, we have developed a system that determines road damage, according to the magnitude of vibration generated without directly intervening the driver when driving. In this paper, we implemented the system using a remote control car (RC car) simulator due to the limitation of the environment in which the actual vehicle is not available in the process of developing the system. In addition, we attached a vibration sensor and GPS sensor to the body of the RC car simulator to measure the vibration value and location information generated by the movement of the vehicle in real-time while driving, and transmitting the corresponding data to the server. In this way, we implemented a system that allows external users to check the damage of roads and the maintenance of the repaired roads based on data more easily than the existing systems. By using this system, we can perform early prediction of road breakage and pattern prediction based on the data. Further, for the RC car simulator, commercialization will be possible by combining it with business in other fields that require flatness.

Seepage Behaviors of Enlargement Levee Containing Box Culvert Constructed on Soft Ground (연약지반에 설치된 배수통문을 포함하는 하천 보축제체의 수문 위치에 따른 침투 거동)

  • Yang, Hak-Young;Kim, Young-Muk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.29-41
    • /
    • 2018
  • In the case of the enlargement levee on the soft foundation, the existing levee and the enlargement levee connection can be damaged due to heterogeneous subsidence such as differential settlement at the joint of the box culvert passing through the levee. This study selected the downstream region of the Geum River and then confirmed the influence of the piping possibility on the levee by performing a 2D seepage analysis and analyzing the seepage tendency according to the position of the box culvert's gate. As a result, the flow velocity and the hydraulic gradient are larger in the upper breakage than the lower breakage, and the upper leak was more vulnerable to the piping than the lower leak. If leaks occur in the gate located on the riverside land, the risk of piping is increased when the water level rises and is maintained highly. In the case of the gate located on the inland, it could be predicted that the leakage could damage the stability of levee by increasing the water pressure inside the levee. As a result, if leakage occurs at any position in the box culvert, the pore water pressure is increased or decreased compared with the case when no leakage occurs. Therefore, if the pore water pressure is drastically reduced or increased compared with the normal case, leakage may occur. However, the result of this study is based on a 2D seepage analysis, and it is likely to be different from actual cases. Therefore, more detailed analysis by 3D analysis is recommended.

Engineering Characteristics of the Light Weight Soil Using Phosphogypsum and EPS Beads (인산석고-EPS 조각을 활용한 경량혼합토의 공학적 특성)

  • Kim, Youngsang;Suh, Dongeun;Kim, Wonbong;Lee, Woobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.19-25
    • /
    • 2009
  • The current study developed light-weighted mixed soil that can solve problems related with soft soil such as ground subsidence, sliding and lateral displacement of ground. By reducing weight of reclaimed soil through mixing phosphogypsum and recycled EPS beads with the weathered granite soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test, and direct shear test were performed and engineering properties were reviewed in order to assess applicability of the light-weighted mixed soil for roads and abutment and various back-filling materials at the reclamation area. Based on the laboratory test results, it was found that the maximum dry unit weight of the light-weighted soil ranges $14.32{\sim}15.79kN/m^3$ and the optimum water content ranges 21.91~24.23%, which means there is 11~19.3% weight decrease effect when comparing with general weathered granite soil. Also it was found that the corrected CBR value ranges 10.4~18.4% satisfying the domestic regulations on road subgrade and back-filling material. In addition, as for shear strength parameter, cohesion ranges 10.79~18.64 kPa and internal frictional angle ranges $35.4{\sim}37.2^{\circ}$, which are similar with those of general construction soil and back-filling material used in Korea. So it can be concluded that light-weighted mixed soil with phosphogypsum can be used effectively for soft reclamation ground as actual filling material and back-filling material. From the current study, it was found that light-weighted mixed soil with phosphogypsum has not only weight reduction effect, but also has no special problems in shear strength and bearing capacity. Therefore, it is expected that phosphogypsum can be recycled in bulk as road subgrade and back-filling material at the reclamation area.

  • PDF

Geoacoustic Model at the YSDP-105 Long-core Site in the Mid-eastern Yellow Sea (황해 중동부 해역 YSDP-105 심부코어 지점의 지음향 모델)

  • Ryang, Woo-Hun;Jin, Jae-Hwa;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.24-36
    • /
    • 2019
  • In the mid-eastern Yellow Sea, glacio-eustatic sea-level fluctuations and a regional tectonic subsidence have combined to represent an aggradational stacking pattern of sedimentary units during late Pleistocene-Holocene. The accumulated sediments are divisible into two-type units of Type-A and Type-B in high-resolution air-gun seismic profiles and the deep-drilled core of YSDP-105. Type-A unit largely comprises clast-rich coarse-grained sediments of non-marine to paralic origin, whereas Type-B unit consists mostly of tidal fine-grained sediments. Based on a bottom model of the sedimentary units, this study suggested a geoacoustic model of long-coring bottom layers at the YSDP-105 drilling site of the mid-eastern Yellow Sea. The geoacoustic model of 64-m depth below the seafloor with four-layer geoacoustic units was reconstructed in continental shelf strata at 45 m in water depth. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the seafloor using the Hamilton modeling method. We suggest that the geoacoustic model will be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the mid-eastern Yellow Sea.

A Study on the Types of Crime and Scalability in Metaverse (메타버스 내 범죄발생 유형과 확장성에 관한 연구)

  • Song, HyeJin;Nam, Wanwoo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.218-227
    • /
    • 2022
  • Purpose: In the case of cavity discovered by ground penetrating radar exploration, it is necessary to accurately predict the filling amount in the cavity in advance, fill the cavity sufficiently and exert strength to ensure stability and prevent ground subsidence. Method: The cavity waveform analysis method by GPR exploration and the method using the cavity shape imaging equipment were performed to measure the cavity shape with irregular size and shape of the actual cavity, and the amount of cavity filling of the injection material was calculated during rapid restoration. Result: The expected filling amount was presented by analyzing the correlation between the cavity size and the filling amount of injection material according to the cavity scale and soil depth through the method by GPR exploration and the cavity scale calculation using the cavity shaping equipment. Conclusion: The cavity scale measured by the cavity imaging equipment was found to be in the range of 20% to 40% of the cavity scale by GPR exploration. In addition, the filling amount of injection material compared to the cavity scale predicted by GPR exploration was in the range of about 60% to 140%, and the filling amount of the injection material compared to the cavity size by the cavity shaping equipment was confirmed to be about 260% to 320 Purpose: The purpose of this study is to examine the types of crimes taking place in the metaverse, and to establish a crime prevention strategy and find a legal deterrent against it. Method: In order to classify crime types in the metaverse, crime types were analyzed based on the results of previous studies and current incidents. Result: Most of the crimes taking place in the metaverse are done in games such as Roblox or Zeppetto. Most of the game users were teenagers. Looking at the types, there are many teens for sexual crimes, violent crimes, and defamation, but professional criminals are often included in copyright infringement, money laundering using virtual currency, and fraud. Conclusion: Since the types of crimes in the metaverse are diverse, various institutional supplementary mechanisms such as establishment of police crime prevention strategies, legal regulations, and law revisions will have to be prepared.

A Study on the Calculation of Cavity Filling Amount Using Ground Penetrating Radar and Cavity Shaping Equipment (지표투과레이더와 공동형상화 장비를 이용한 공동채움량 산정 연구)

  • Hong, Gigwon;Kim, Sang Mok;Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.261-268
    • /
    • 2022
  • Purpose: In the case of cavity discovered by ground penetrating radar exploration, it is necessary to accurately predict the filling amount in the cavity in advance, fill the cavity sufficiently and exert strength to ensure stability and prevent ground subsidence. Method: The cavity waveform analysis method by GPR exploration and the method using the cavity shape imaging equipment were performed to measure the cavity shape with irregular size and shape of the actual cavity, and the amount of cavity filling of the injection material was calculated during rapid restoration. Results: The expected filling amount was presented by analyzing the correlation between the cavity size and the filling amount of injection material according to the cavity scale and soil depth through the method by GPR exploration and the cavity scale calculation using the cavity shaping equipment. Conclusion: The cavity scale measured by the cavity imaging equipment was found to be in the range of 20% to 40% of the cavity scale by GPR exploration. In addition, the filling amount of injection material compared to the cavity scale predicted by GPR exploration was in the range of about 60% to 140%, and the filling amount of the injection material compared to the cavity size by the cavity shaping equipment was confirmed to be about 260% to 320%.

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads (도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법)

  • Byunghoon, Choi;Sukjoon, Pyun;Woochang, Choi;Churl-hyun, Jo;Jinsung, Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.189-200
    • /
    • 2022
  • Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.

A Diagnostic Analysis on the Conservation Status for the Maintenance of the Front Wall of Jungjeongdang Area of Dodong-Seowon (도동서원 중정당 전면 담장의 보수를 위한 진단학적 보존 상태 분석)

  • Kim, Kyu-Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study was conducted to analyze the conservation status by diagnostical methology for the front wall of Jungjeongdang area of Dodong-Seowon. The study was carried out as photogrammetry and mapping - investigation of materials and conservation status - analysis and evaluation of conservation status. The results are as follows. First, in the case of photogrammetry, each photograph was took in superposition, and the distortions of the photographs were corrected and synthesized. Based on this, actual survey drawings of the wall were prepared. Second, in case of material and conservation status, the wall is in the form of Wapyeondam and the material of the head part are tile, mud and lime, and the material of the body part are mud and tile. The mud was mixed with gravel, sand and straw. At the base part, amorphous natural stones and mud were used. The remarkable damage that appears on the wall is erosion of the base part, and some disintegration appears in the body part. There is a biological patina on the head and the base, and vegetation such as lichen is concentrated on the partial body. There was superficial deposit in the head part, and some tiles were broken or lost. Deep fissures are intensively located in some part of the eastern wall. Third, in the case of analysis and evaluation of the conservation status, it is considered that by the erosion of the foundation part and the disintegration of the body part, there is a possibility that physical damage will continue to be applied to the wall, so immediate action is necessary. The distribution of biological patina and vegetation does not appear to cause great problems in the wall, but it is necessary to reduce it in view of aesthetic problems. A cracked or missing tile would need to be replaced, and deep cracks in the eastern wall appear to have been caused by subsidence, and reinforcement of the underground is necessary to prevent further damage.