• Title/Summary/Keyword: Actual power

Search Result 2,261, Processing Time 0.028 seconds

Optimum MPPT Control Period for Actual Insolation Condition (실제 일사량 조건에서의 최적 MPPT 제어주기)

  • Ryu, Danbi;Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2019
  • Solar power generation systems require maximum power point tracking (MPPT) control to acquire maximum power using inefficient and high-cost PV modules. Most conventional MPPT algorithms are based on the slope-tracking concept. The perturb and observe (P&O) algorithm is a typical slope-tracking method. The two factors that determine the MPPT performance of P&O algorithm are the MPPT control period and the magnitude of the perturbation voltage. The MPPT controller quickly moves to the new maximum power point at insolation change when the perturbation voltage is set to large, and the error of output power will be huge in the steady state even when insolation is not changing. The dynamics of the MPPT controller can be accelerated even though the perturbation voltage is set to small when the MPPT control period is set to short. However, too short MPPT control period does not improve MPPT performance but consumes the MPPT controller resources. Therefore, analyzing the performance of the MPPT controller is necessary for actual insolation conditions in real weather environment to determine the optimum MPPT control period and the magnitude of the perturbation voltage. This study proposes an optimum MPPT control period that maximizes MPPT efficiency by measuring and analyzing actual insolation profiles in typical clear and cloudy weather in central Korea.

Development of Supply Capability Calculation and Prediction Technology for Generator (발전기 공급능력 산정 및 예측 기술개발)

  • Kim, Euihwan;An, Youngmo;Hong, Eunkee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.425-431
    • /
    • 2016
  • Supply Capability of the generator, if the maximum demand occurs, refers to the maximum power that can be stably supplied and it is possible to maintain stable power supply to be greater than actual load. However, unexpected power demand and reduction in supply Capability due to stop of unexpected generator in operation can temporarily make a big chaos in power system. In fact, due to a lack of power supply Capability in the country, enforced emergency load adjustment to the September 15, 2011, the circulation power outage has occurred in several cities. As the result, interrupted operation of the elevator and stopped hospital medical equipment led to a great deal of trouble to people's lives, causing a social problem. At that time, it was found that a failed frequency control because of smaller actual supply Capability than that of predicted. The difference was about 1,170 MW with Gas turbine power plant. By accurately calculating the generator supply capability, we can not only grasp the power reserve rate, but also correspond to the time of power supply instability.

Modeling and Analysis of the KEPCO UPFC System by EMTDC/PSCAD

  • Yoon, Jong-Su;Kim, Soo-Yeol;Chang, Byung-Hoon;Lim, Seong-Joo;Choo, Jin-Boo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.148-154
    • /
    • 2003
  • This paper describes the development of KEPCO's 80MVA UPFC electromagnetic transient model and the analysis of its performance in the actual Korean power system. KEPCO's 80MVA UPFC is currently undergoing installation and will be ready for commercial operation from the year 2003. In order to apply a new FACTS device such as the UPFC to the actual power system, the utility needs, in advance, both load flow stability studies and transient studies. Therefore, KEPRI, the research institute of KEPCO, developed a detailed transient analysis model that is based on the actual UPFC S/W algorithm and H/W specifications. This simulation model is implemented by an EMTDC/PSCAD package. The results of the simulation show the effectiveness of UPFC operation in the KEPCO power system.

A Study on Prediction of Power Consumption Rate for Heating and Cooling load of School Building in Changwon City (창원시 학교 건축물의 냉난방부하에 대한 전력 소비량 추정에 관한 연구)

  • Park, Hyo-Seok;Choi, Jeong-Min;Cho, Sung-Woo
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.11 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • This study was carried out in order to establish the estimation equation for school power consumption using regression analysis based on collected power consumption for two years of weather data and schools are located in Central Changwon and Masan district in Changwon city. (1) The power consumption estimation equation for Heating and cooling is calculated using power consumption per unit volume, the difference between actual power consumption and results of estimation equations is 4.1%. (2) The power consumption estimation equation for heating load is showed 2.6% difference compared to actual power consumption in Central Changwon and is expressed 2.9% difference compared to that in Masan district. Therefore, the power consumption prediction for each school using the power consumption estimation equation is possible. (3) The power consumption estimation equation for cooling load is showed 8.0% difference compared to actual power consumption in Central Changwon and is expressed 2.9% compared to that in Masan district. As the power consumption estimation equation for cooling load is expressed difference compared to heating load, it needs to investigate influence for cooling load.

Different Approaches for Estimating the Full-scale Performance of a Ship based on 3-DOF Maneuvering Equations of Motion: Given Speed, RPM or Power (3자유도 조종운동방정식을 이용한 실선성능 추정 방법에 관한 연구: 속도, 분당회전수, 또는 엔진동력을 기준으로)

  • You, Youngjun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.427-438
    • /
    • 2019
  • It was important to estimate the full-scale operating performance including actual RPM and engine power of a ship since the operation efficiency during a voyage could be evaluated from the values. In the previous research, an entire voyage was simulated by following recorded speeds obtained from AIS and full-scale measurement data. Although reasonable tendencies were observed in the estimated speed, actual RPM, and engine power, it was impossible for them to be completely corresponded with the measured values due to the difference between actual operation and mathematical model. In this paper, alternative approaches to cope with the speed, actual RPM, and engine power were suggested by following the given speed, RPM, and power respectively. After entire voyages were simulated according to a given value, the effects of the value on the estimated performance were investigated. And, it was confirmed that the appropriate approach could be differently chosen according to the aim of the simulation or given value.

Implementation of a Fuel Cell Dynamic Simulator

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.336-342
    • /
    • 2007
  • This paper presents the development of a fuel cell dynamic simulator using a programmable DC power supply and LabVIEW graphical user interface. The developed simulator closely describes the static and dynamic characteristics of an actual proton exchange membrance fuel cell (PEMFC). The experimental results are provided to verify the operation of the simulator. The developed simulator can be used as a convenient and economic alternative to an actual fuel cell for developing and testing a fuel cell power conditioning system.

The Research on the Actual Condition and Maintenance Guide of Solar Power System (태양광 발전 시스템 점검기법 및 현장실태 조사)

  • Han, Woon-Ki;Jung, Jin-Su;Ahn, Jae-Min;Choi, Jong-Soo;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.574-578
    • /
    • 2009
  • Recently solar power system is increasing and planing to add it and 169 up to 2008 year march. In this paper, we researched sites installed PV system and analyzed problems for improvement of electrical safety. Results of actual condition research on the sites have problems such as infiltration of moisture, aging of electrode, destruction of insulation and backsheet crack and so on. So we suggest maintenance guide of solar power system in a inspection statistical chart, For making a secure about a electrical safety, we should inspect solar power system by the KESCO guide and rule by periods.

Case Study : Assessment of Small Hydropower Potential Using Runoff Measurements (관측 유량 자료를 이용한 소수력 잠재량 평가에 대한 사례연구)

  • Jung, Sung-Eun;Kim, Jin-Young;Kang, Yong-Heack;Kim, Hung-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.43-54
    • /
    • 2018
  • In this study, we assessed dependency of small hydropower potentials on the two different runoff such as the estimated runoff based on the rainfall amounts and measured runoff. The hydpropower potentials were evaluated using actural power generations taken from Deoksong, Hanseok, and Socheon small hydropower plants over Han and Nakdong river basins, respectively. As a result of comparing the actual power generation amount with the potential amount based on the rainfall amount and the estimated amount based on the observed flow amount by each small hydroelectric power plant, the degree of latent small hydro energy by the observed flow was confirmed to be high. It is confirmed that the potential hydroelectric power generation rate is estimated to be about average 30%Point higher than the actual generation amount as a result of the measured flow rate rather than using the rainfall amount. Based on this, a method for improving the degree of the actual generation amount is proposed.

Evaluation of Effects of Real Joint-Operation of Multi-purpose Dams (다목적댐군의 실제 연계운영 효과 평가)

  • Kang, Min-Goo;Lee, Gwang-Man;Cha, Hyung-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.101-112
    • /
    • 2007
  • In this study, a methodology was developed to evaluate the effects produced in the event of joint-operation of dams from the viewpoint of water use. It was applied to evaluating the actual results of dam operation in the Han River basin. In order to evaluate the effects of real joint-operation in terms of water supply and flow conditions, the methodology used the satisfaction rate of water requirement and the stability of flow conditions at the evaluation site as indicator. In order to evaluate the effects of joint-operation in terms of power generation, the total power generation produced by dams was used as evaluation indicator. Actual operation results were evaluated by comparison of evaluation indicators relating to single dam operation by which the notified mont of water was supplied, as well as to optimization models. Results of actual joint-operation of the Han River basin, from 2001 to 2004, were compared yearly with results from single operation and optimization model; in terms of water supply, the satisfaction ratio of water requirement stood at $94.36{\sim}99.68%$ for single operation, $97.16{\sim}99.90%$ for actual joint-operation, and 100.0 % for optimization model for all four years. The stability of flow condition was evaluated by the coefficient of river regime and coefficient of flow conditions definitely, indicating that flow conditions were more stable in case of actual operation and optimization models than in case of single operation. The actual total power generation was compared with that generated by other operation rules, indicating that the optimization model increased the power generation by $-3.47{\sim}6.54%$ compared with the actual total power generation, and that the single operation decreased the power generation amount by $12.68{\sim}38.94%$ compared with the actual total power generation.

The Development of Boiler Feedwater Master Control System for Power Plant (발전소 보일러 급수 주제어 시스템의 개발)

  • Lim, Gun-Pyo;Park, Doo-Yong;Kim, Jong-Ahn;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.442-450
    • /
    • 2012
  • Almost domestic power plants are being operated by foreign distributed control system. Many korean power plants are being operated over their lifetime so they need to be retrofitted. So we are developing the distributed control system to solve this problem by our own technique. The simulator was already made to verify the reliability of the algorithms. The unit loop function tests of all algorithms were finished in the actual distributed control system for installation of power plant and their results were satisfactory. The unit loop function tests are for each unit equipment algorithm. So the total operation tests will be made with all algorithms together in the actual distributed control system to be applied to power plant. When the verification through all tests is finished, algorithms with hardware will be scheduled to be installed and operated in the actual power plant. This research result will contribute to the safe operation of the deteriorated power plant and korean electric power supply as well as domestic technical progress. This entire processes and results for the development are written for the example of boiler feedwater master algorithm out of all algorithms in this paper.