• 제목/요약/키워드: Actual network

검색결과 1,388건 처리시간 0.029초

고도정수처리에 따른 상수도 공급과정에서의 소독부산물 농도 예측모델 개발 (Development of a Concentration Prediction Model for Disinfection By-product according to Introduce the Advanced Water Treatment Process in Water Supply Network)

  • 서지원;김기범;김기범;구자용
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.421-430
    • /
    • 2017
  • In this study, a model was developed to predict for Disinfection By-Products (DBPs) generated in water supply networks and consumer premises, before and after the introduction of advanced water purification facilities. Based on two-way ANOVA, which was carried out to statistically verify the water quality difference in the water supply network according to introduce the advanced water treatment process. The water quality before and after advanced water purification was shown to have a statistically significant difference. A multiple regression model was developed to predict the concentration of DBPs in consumer premises before and after the introduction of advanced water purification facilities. The prediction model developed for the concentration of DBPs accurately simulated the actual measurements, as its coefficients of correlation with the actual measurements were all 0.88 or higher. In addition, the prediction for the period not used in the model development to verify the developed model also showed coefficients of correlation with the actual measurements of 0.96 or higher. As the prediction model developed in this study has an advantage in that the variables that compose the model are relatively simple when compared with those of models developed in previous studies, it is considered highly usable for further study and field application. The methodology proposed in this study and the study findings can be used to meet the level of consumer requirement related to DBPs and to analyze and set the service level when establishing a master plan for development of water supply, and a water supply facility asset management plan.

분산전원 투입을 고려한 배전망 이용요금 산정에 관한 연구 (Calculation of Distribution Network Charging for DG Embedded Distribution System)

  • 황석현;김문겸;박종근
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.513-521
    • /
    • 2012
  • With the advent of smart grid, distribution network charges have been one of keystones of ongoing deregulation and privatization in power industries. This paper proposes a new charging methodology to allocate the existing distribution network cost with an aim of reflecting the true cost and benefit of network customers, especially of distribution generator (DG). The proposed charging methodology separates distribution network costs due to the respective real and reactive power flows. The costs are then allocated to network users according to each charge for the actual line capacity used and available capacity. This distribution network charging model is able to provide the economic signals to reward network users who are contributing to better power factors, while penalizing customers who worsen power factors. The proposed method is shown on IEEE 37 bus system for distribution network, and then the results are validated through the comparison with the MW-Miles and MVA-Miles methods. The charges derived from the proposed method can provide appropriate incentives/penalties to network customers to behave in a manner leading to a better network condition.

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측 (Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks)

  • 이윤규;윤여원;강병희
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.75-81
    • /
    • 2000
  • 일반적으로 자연상태의 흙은 이방성을 나타내며, 이러한 흙의 이방성이 응력-변형률 거동에 미치는 영향은 매우 크다. 따라서 본 연구에서는 인공신경회로망 모델을 이용하여 압밀응력비 변화에 따른 정규압밀점토의 응력-변형률 거동을 모델링하고 비배수전단강도를 예측하여 보았다. 이때 사용된 신경회로망은 일반화된 델타규칙으로도 불리우는 오차역전파 학습 알고리즘을 이용한 다층신경회로망이다. 신경회로망의 학습은 인공퇴적 점토시료를 이용, 연직압밀응력과 압밀응력비를 다르게 정규압밀시킨후 비배수전단시험을 실시하여 얻어진 시험 결과를 이용하였고, 학습된 신경회로망을 이용하여 학습시 제외되었던 압밀응력비 상태에서의 비배수전단강도를 추론하여 본 결과 예측치와 실측치가 잘 일치하였다. 검토결과 실측치와 추론치 사이에는 결정계수($r^2$) 0.973 이상의 높은 상관관계가 있음을 확인하였다. 따라서, 본 연구결과는 점토의 비배수전단강도를 예측함에 있어서 인공신경회로망모델의 적용 가능성을 보여주었다.

  • PDF

IP 마킹 서버를 활용한 금융 전산망 공격자 역추적 기술 연구 (A Study on Trace-Back Method of Financial Network Using IP Marking Server)

  • 박근호;최규원;손태식
    • 한국전자거래학회지
    • /
    • 제22권4호
    • /
    • pp.129-139
    • /
    • 2017
  • 핀테크의 등장으로 인하여 많은 금융 서비스가 모바일 인터넷 환경에서 이용할 수 있게 되었고, 최근에는 온라인으로 모든 은행 서비스를 제공하는 인터넷 은행도 생겼다. 이처럼 인터넷을 통한 금융 서비스의 비중이 늘어남에 따라 사용자들에게 편의를 제공하지만 그와 동시에 금융 전산망에 대한 위협도 증가하고 있다. 이에 따라, 금융 기관들은 침해사고에 대비하여 보안시스템에 많은 투자를 하고 있지만 날이 갈수록 해커에 의한 공격은 정교해지고 있어서 대응하기 어려운 경우도 많다. 본 논문에서는 공격자의 실제 위치를 파악할 수 있는 IP 역추적 기술을 살펴보고 금융 전산망 분석을 통해 IP 역추적 기술을 적용하기 위한 다양한 방안을 제시한다. 그리고 Infra-Structure 구축을 통한 새로운 IP 역추적 방법을 금융 전산망에 적용하는 방법을 제안하고 시뮬레이션을 활용한 실험을 통해 효율성을 증명하고자한다.

연약지반상의 성토시 침하예측에 대한 BPNN과 RNN의 비교 연구 (A Comparative Study between BPNN and RNN on the Settlement Prediction during Soft Ground Embankment)

  • 김동식;채영수;김영수;김현동;김선형
    • 한국재난정보학회 논문집
    • /
    • 제3권1호
    • /
    • pp.37-53
    • /
    • 2007
  • Various difficult problems occur due to insufficient bearing capacity or excessive settlements when constructing roads or large complexes. Accurate predictions on the final settlement and consolidation time can help in choosing the ground improvement method and thus enables to save time and expense of the whole project. Asaoka's method is probably the most frequently used for settlement prediction which are based on Terzaghi's one dimensional consolidation theory. Empirical formulae such as Hyperbolic method and Hoshino's method are also often used. However, it is known that the settlement predicted by these methods do not match with the actual settlements. Furthermore these methods cannot be used at design stage when there is no measured data. To find an elaborate method in predicting settlement in embankments using various test results and actual settlement data from domestic sites, Back-Propagation Neural Network(BPNN) and Recurrent Neural Network(RNN) were employed and the most suitable model structures were obtained. Predicted settlement values by the developed models were compared with the measured values as well as numerical analysis results. Analysis of the results showed that RNN yielded more compatible predictions with actual data than BPNN and predictions using cone penetration resistance were closer to actual data than predictions using SPT results. Also, it was found that the developed method were very competitive with the numerical analysis considering the number of input data, complexity and effort in modelling. It is believed that RNN using cone penetration test results can make a highly efficient tool in predicting settlements if enough field data can be obtained.

  • PDF

Design and Implementation of a Network-Adaptive Mechanism for HTTP Video Streaming

  • Kim, Yo-Han;Shin, Jitae;Park, Jiho
    • ETRI Journal
    • /
    • 제35권1호
    • /
    • pp.27-34
    • /
    • 2013
  • This paper proposes a network-adaptive mechanism for HTTP-based video streaming over wireless/mobile networks. To provide adaptive video streaming over wireless/mobile networks, the proposed mechanism consists of a throughput estimation scheme in the time-variant wireless network environment and a video rate selection algorithm used to increase the streaming quality. The adaptive video streaming system with proposed modules is implemented using an open source multimedia framework and is validated over emulated wireless/mobile networks. The emulator helps to model and emulate network conditions based on data collected from actual experiments. The experiment results show that the proposed mechanism provides higher video quality than the existing system provides and a rate of video streaming almost void of freezing.

신경회로망과 순환최소자승법을 이용한 Skid-to-Turn 미사일의 공력 파라미터 추정 (Estimation of Aerodynamic Coefficients for a Skid-to-Turn Missile using Neural Network and Recursive Least Square)

  • 김윤환;박균법;송용규;황익호;최동균
    • 한국항공운항학회지
    • /
    • 제20권4호
    • /
    • pp.7-13
    • /
    • 2012
  • This paper is to estimate aerodynamic coefficients needed to determine the missiles' controller design and stability from simulation data of Skid-to-Turn missile. Method of determining aerodynamic coefficients is to apply Neural Network and Recursive Least Square and results were compared and researched. Also analysing actual flight test data was considered and sensor noise was added. Estimate parameter of data with sensor noise added and estimated performance and reliability for both methods that did not need initial values. Both Neural Network and Recursive Least Square methods showed excellent estimate results without adding the noise and with noise added Neural Network method showed better estimate results.

유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기 (Adaptive FNN Controller for High Performance Control of Induction Motor Drive)

  • 이정철;이홍균;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive with HAl Controller)

  • 남수명;최정식;고재섭;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF