• Title/Summary/Keyword: Actual discharge

Search Result 269, Processing Time 0.024 seconds

Multi-Junction Space Solar Cell Health Checking Method using Electroluminescence Phenomena (전계발광현상을 이용한 우주용 다접합 태양전지의 건전성 평가기법)

  • Park, Je-Hong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1017-1026
    • /
    • 2009
  • The solar cell system operates by facing the sun-light. Minor cracks, static discharge, and thermal shock that can happen during production/testing phase can lead to degradation in performance during operation, since solar cells are exposed to extreme thermal/mechanical environment in space. In order to detect small cracks and internal damages in the solar cells due to thermal shocks, which are the core units of a solar cell system, expensive equipment, complicated test process, and much time are required. Therefore, a qualitative method for easily and quickly testing the 'health' of solar cell functionality is required. This dissertation describes a theoretical and technical grounds for quickly and easily evaluating the health of solar cells using electroluminescence effect of Gallium-Arsenide solar cells that are most widely used by spacecrafts in recent years. Also described in the dissertation is the technical issues and constraining factors for applying the proposed method to actual space-rated solar cell systems.

Optical Characteristic Analysis of Electrodeless Lamp due to the Density Difference of Mercury (수은의 밀도차에 의한 무전극 램프의 광특성 분석)

  • Lee, Kye-Seung;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • For the analysis of the optical characteristics of electrodeless lamps, all the lamp surface temperatures have been treated the same. However, the interpretation of optical properties in this way has not been sufficient in terms of accuracy. In this paper, to overcome this problem, we divided the inside of the bulb into two parts, hot spot and cold spot, and analyzed the density difference of mercury by different temperatures. Here, it is assumed that the distribution of temperature and density is linear. The effect of optical characteristics through redistribution of hot spot and cold spot density was analyzed. It was also confirmed that the ratio of the density of the redistributed discharge gas has a great influence on the saturation of the optical characteristics. Therefore, it is proved that the design method through the domestic setting is very useful in the actual design, and the method for shortening the time for stabilizing the optical characteristics is obtained.

A case analysis on the change of stage-discharge relationship by control factors - based on actual survey data - (통제요인에 따른 수위-유량관계 변화에 대한 사례분석 - 실측자료를 기반으로 -)

  • Shim, Eun-Jeung;Park, Hyun-Gun;Lee, Jae-Hyug;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.342-342
    • /
    • 2012
  • 이론적으로 하천의 흐름은 시간과 위치에 따라 수위와 유량의 관계가 일대일로 대응한다는 가정을 두지만, 실제 하천은 여러 가지 통제요인에 의해 다양하게 변화한다. 특히 하천 상 하류 일부구간에서 인공적인 골재채취나 준설작업과 같은 하도공사가 이루어진다면 하천의 흐름은 일시적인 수위변화가 아닌 단면의 변화 나아가 수위에 따른 유량의 증가 및 감소를 일으키게 된다. 또한 모래하상이나 식생의 영향을 받는 하천의 경우에도 빈번한 단면 및 유속의 변화를 볼 수 있다. 본 연구에서는 2007년부터 2011년까지 유량조사사업단에서 측정이 이루어진 4개 수계 577개 지점을 대상지점으로 선정하고, 이들 중 2개년 이상 측정이 이루어져 단면변화 및 지점의 수리특성 여부를 비교할 수 있는 한강 55개, 낙동강 49개, 금강 43개, 영산강 55개 지점의 수위-유량관계 변화여부를 검토하였다. 본 연구는 경년변화 없이 일정한 수위-유량관계를 보이거나 보와 같은 단면 통제에 의해 단순한 기간분리가 발생되는 지점, 4대강 공사가 진행 중인 지점, 미미한 단면변화에 의해 저수위의 수위-유량관계가 변화된 지점들은 분석 대상에서 제외하고, 중수위 이상에서 수위와 유량의 관계가 변화하는 지점들을 찾아 그 원인을 파악하고 사례를 분석하는데 중점을 두었다. 검토 결과 중수위 이상에서 수위-유량관계가 변화되는 요인으로 크게 상류와 하류에서 하천준설을 실시하여 수위에 따른 에너지선의 증가 및 감소를 일으킨 경우와, 제방공사에 의해 고수위가 변화가 발생되었거나 그 해에 배수영향을 받았는지 여부 또는 하도에 자생하는 식생의 영향 그리고 모래 및 자갈하천에서 발생되는 큰 단면변화 등으로 나타났다.

  • PDF

On-Site Measurement of the Inlet Air Evaporative Cooling Performance for a Centrifugal Turbo Compressor (CDA 인입공기 증발냉각을 통한 압축기 성능 개선장치 개발 연구)

  • Kim, Gyu Wan;Park, Jin Ouk;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.873-879
    • /
    • 2014
  • In the present study, water vapor is injected at various positions in a Clean Dry Air (CDA) system such as a system inlet duct, compressor inlet, and compressor outlet by humidified air turbines. The application of evaporative cooling reduces the compression work and enhances the Energy Consumption Index (ECI) per unit volume. The main purpose of this study is to investigate the compressor power performance with different inlet air temperatures and humidity conditions. It is found that the actual power consumption and discharge flow are significantly influenced by the inlet air temperature as well as relative humidity. The results obtained during this study are compared both numerically and experimentally and are found to be in very good agreement.

A Study on the Dietary Intake and the Nutritional Status among the Pancreatic Cancer Surgical Patients

  • Kang, Jimin;Park, Joon Seong;Yoon, Dong Sup;Kim, Woo Jeong;Chung, Hae-yun;Lee, Song Mi;Chang, Namsoo
    • Clinical Nutrition Research
    • /
    • v.5 no.4
    • /
    • pp.279-289
    • /
    • 2016
  • The adequate dietary intake is important to maintain the nutritional status of the patients after pancreatic cancer surgery. This prospective study was designed to investigate the dietary intake and the nutritional status of the patients who had pancreatic cancer surgery. Thirty-one patients (15 men, 16 women) were enrolled and measured body weight, body mass index (BMI), nutritional risk index (NRI), and Malnutrition Universal Screening Tool (MUST). Actual oral intake with nutritional impact symptoms recorded on the clinical research foam at every meal and medical information were collected from electronic medical charts. The rates of malnutrition at admission were 45.1% (14/31) and 28.9% (9/31) by NRI and MUST method, respectively, but those were increased to 87% (27/31) and 86.6% (26/31) after operation on discharge. The median values of daily intake of energy, carbohydrates, fat, and protein were 588.1 kcal, 96.0 g, 11.8 g, and 27.0 g, respectively. Most patients (n = 20, 64.5%) experienced two or more symptoms such as anorexia, abdominal bloating and early satiety. There were negative correlations between C-reactive protein (CRP) levels and the intake of total energy, protein, fat, and zinc. The rates of malnutrition were increased sharply after surgery and the dietary intake also influenced the inflammatory indicators. The results suggested that need of considering special therapeutic diets for the patients who received pancreatic surgery.

Applicability evaluation of velocity profile method by V-ADCP measuring real-time river water use (실시간 하천수사용량 계측을 위한 V-ADCP 유속분포법의 적용성 평가)

  • Song, Jae Hyun;Park, Moon Hyung;Cha, Jun-Ho;Kim, Chi Young
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • In order to properly manage the river water use, it is necessary to collect reliable data of river water use. However, It is not easy to get credible river water use data in Korea because there are some difficultites in reporting and measuring river water use data. Thus, Han River Flood Control Office has installed and operated measuring facility using V-ADCP on the EOUBO intake open channel in the Gosan-Bongdong station section of the Mankyung river, where the use of agricultural water is large. In this study, the applicability of the V-ADCP velocity profile method was evaluated for real-time river water use. For this reason, the parameter sensitivity of Chiu's 2D velocity distribution equation was analyzed and the optimal parameters based on actual discharge data were calculated. In addition, the characteristics of the velocity profile method were analyzed by comparative evaluation of the rating curve method and the index velocity method.

Changes in the Hospital Standardized Mortality Ratio Before and During the COVID-19 Pandemic: A Disaggregated Analysis by Region and Hospital Type in Korea

  • EunKyo Kang;Won Mo Jang;Min Sun Shin;Hyejin Lee;Jin Yong Lee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.2
    • /
    • pp.180-189
    • /
    • 2023
  • Objectives: The coronavirus disease 2019 (COVID-19) pandemic has led to a global shortage of medical resources; therefore, we investigated whether COVID-19 impacted the quality of non-COVID-19 hospital care in Korea by comparing hospital standardized mortality rates (HSMRs) before and during the pandemic. Methods: This retrospective cohort study analyzed Korean National Health Insurance discharge claim data obtained from January to June in 2017, 2018, 2019, and 2020. Patients' in-hospital deaths were classified according to the most responsible diagnosis categories. The HSMR is calculated as the ratio of expected deaths to actual deaths. The time trend in the overall HSMR was analyzed by region and hospital type. Results: The final analysis included 2 252 824 patients. In 2020, the HSMR increased nationwide (HSMR, 99.3; 95% confidence interval [CI], 97.7 to 101.0) in comparison to 2019 (HSMR, 97.3; 95% CI, 95.8 to 98.8). In the COVID-19 pandemic zone, the HSMR increased significantly in 2020 (HSMR, 112.7; 95% CI, 107.0 to 118.7) compared to 2019 (HSMR, 101.7; 95% CI, 96.9 to 106.6). The HSMR in all general hospitals increased significantly in 2020 (HSMR, 106.4; 95% CI, 104.3 to 108.5) compared to 2019 (HSMR, 100.3; 95% CI, 98.4 to 102.2). Hospitals participating in the COVID-19 response had a lower HSMR (HSMR, 95.6; 95% CI, 93.9 to 97.4) than hospitals not participating in the COVID-19 response (HSMR, 124.3; 95% CI, 119.3 to 129.4). Conclusions: This study suggests that the COVID-19 pandemic may have negatively impacted the quality of care in hospitals, especially general hospitals with relatively few beds. In light of the COVID-19 pandemic, it is necessary to prevent excessive workloads in hospitals and to properly employ and coordinate the workforce.

A Study on the Assessment of Pollution Loads at Small Stream in Yeongsan River Watershed (영산강수계 소하천의 오염부하량 평가에 관한 연구)

  • Ha, Don-Woo;Shim, Hongbin;Kim, Haesung;Kim, Yoonsoo;Cho, Sohyun;Song, Chang-Soo;Kang, Taegu;Kim, Yeong-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, the load of the river was calculated by using the actual data of the Yeong-bon C1, Yeong-bon C2, Yeong-bon C3 monitoring points of the Yeong-san river watershed to determine the excess. As a result, the BOD is 75.83 % at the Yeong-bon C1 and the five-year average value is higher than at other points. The Yeong-bon C3 was 72.15 % and Yeong-bon C2 was analyzed as 68.78 %. The five-year average of the T-P was 71.95 % for the Yeong-bon C2 and 69.86 % for the Yeong-bon C3 and 69.16 % for Yeong-bon C1; these levels exceeded the target water quality standards of 50 %. As a result of analyzing the pollutant load, we found that the Yeong-bon C1 has been highly affected by the nonpoint pollution source because the excess rate is high in the upper section of the flow rate. The Yeong-bon C2 showed a high excess rate in the lower part of the flow rate, and it was estimated that the influence of the point pollution source was large. The excess rate of the Yeong-bon C3 is small in the interval deviation, and it was evaluated as being affected by both point and non-point pollution sources. The TMDL monitoring network data were used to estimate the exceed ratio for the target water quality assessment, and the implementation evaluation was made by the flow exceedance probability interval to analyze the monitoring data so that the data could be utilized according to the purpose of the measurement network.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

Flood Routing of Sequential Failure of Dams by Numerical Model (수치모형을 이용한 순차적 댐 붕괴 모의)

  • Park, Se Jin;Han, Kun Yeun;Choi, Hyun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1797-1807
    • /
    • 2013
  • Dams always have the possibility of failure due to unexpected natural phenomena. In particular, dam failure can cause huge damage including damage for humans and properties when dam downstream regions are densely populated or have important national facilities. Although many studies have been conducted on the analysis of flood waves about single dam failure thus far, studies on the analysis of flood waves about the sequential failure of dams are lacking. Therefore, the purpose of this study was to calculate the peak discharge of sequential failure of dams through flood wave analysis of sequential failure of dams and this analysis techniques to predict flood wave propagation situation in downstream regions. To this end, failure flood wave analysis were conducted for Lawn Lake Dam which is a case of sequential failure of dams among actual failure cases using DAMBRK to test the suitability of the dam failure flood wave analysis model. Based on the results, flood wave analysis of sequential failure of dams were conducted for A dam in Korea assuming a virtual extreme flood to predict flood wave propagation situations and 2-dimensional flood wave analysis were conducted for major flooding points. Then, the 1, 2-dimensional flood wave analysis were compared and analyzed. The results showed goodness-of-fit values exceeding 90% and thus the accuracy of the 1-dimensional sequential failure of dams simulation could be identified. The results of this study are considered to be able to contribute to the provision of basic data for the establishment of disaster prevention measures for rivers related to sequential failure of dams.