• Title/Summary/Keyword: Actual and potential evapotranspiration

Search Result 36, Processing Time 0.04 seconds

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.

Impact of Climate Change on Variation of the Aridity and Evaporative Indexes in South Korea

  • Ha, Doan Thi Thu;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.146-146
    • /
    • 2019
  • The aridity index, which is determined as the ratio of potential evapotranspiration to precipitation, is one of key parameters in drought characterization. Whereas the evaporative index, which is defined as the ratio of actual evapotranspiration to precipitation, represents the fraction of available water consumed by the evapotranspiration process. This study investigates variation of the aridity and evaporative indexes due to climate change during the 21st century in South Korea. Estimations of the aridity and evaporative indexes are obtained using SWAT mode based on ensemble of 13 different GCMs over 5 large basins of South Korea for 2 RCP scenarios (RCP 4.5 and RCP 8.5). The results shows the opposite trends of the two indexes, where the aridity index is projected as always increase, while the evaporative index is expected to decrease in all of 3 future period (2011-1940, 1941-1970, 1971-2099). The estimated results also suggest that land cover influenced significantly evapotranspiration along with the change of climate. The study indicates that South Korea will be facing with a high risk of water scarcity in future due to climate change, which is seriously challenging for water planing and management in the country.

  • PDF

HOURLY VARIATION OF PENMAN EVAPOTRANSPIRATlON CONSIDERING SOIL MOISTURE CONDITION

  • Rim, Chang-Soo
    • Water Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.1-16
    • /
    • 2004
  • The purpose of this study is to understand the characteristics of hourly PET(Potential Evapo Transpiration) variation estimated using Penman ET model. The estimated PET using Penman model was compared with measured ET. For this study, two subwatersheds were selected, and fluxes, meteorological data and soil moisture data were measured during the summer and winter days. During the winter days, the aerodynamic term of Penman ET is much greater than that of energy term of Penman ET for dry soil condition. The opposite phenomena appeared fer wet soil condition. During the summer days, energy term is much more important factor for ET estimation compared with aerodynamic term regardless of soil moisture condition. Penman ET, measured ET, and energy term show the similar hourly variation pattern mainly because the influence of net radiation on the estimation of Penman ET is much more significant compared with other variables. Even though there are much more soil moisture in the soil during the wet days, the estimated hourly ET from Penman model and measured hourly ET have smaller values compared with those of dry days, indicating the effect of cloudy weather condition.

  • PDF

Validation of Complementary Relationship Hypothesis for Evapotranspiration in Multipurpose Dam Basins (다목적댐유역에서의 증발산 보완관계가설 검증)

  • Kim, Jihoon;Kang, Boosik;Kim, Jin-Gyeom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.549-559
    • /
    • 2017
  • The complementary relationship hypothesis for areal evapotranspirations was validated in the regional-scale area of multipurpose dam basins in Korea and the long-term water balances were indirectly identified. Annual actual evapotranspiration ($ET_A$) was assumed the difference between total annual precipitation and total annual inflow and the available moisture was assumed the total precipitation. The seasonally varying pan coefficient (kp) is estimated as the ratio of the $ET_{pan}$ and the evapotranspiration calculated by FAO Penman-Monteith equation ($ET_{PM}$). The complementary relationships using ground observation data of $ET_P$ and $ET_A$ in the multipurpose dam basins follow generally the typical pattern that $ET_P$ and $ET_A$ is complementary and converges to equivalent evapotranspiration ($ET_W$) under the extreme wet environment. However, $ET_A$ of Juam dam was estimated relatively greater than other basins and exceeds even $ET_P$ at certain range with high moisture availability, which can be understood as the results of possible over-estimation of precipitation or under-estimation of dam inflow. It is expected that the use of evapotranspiration complementary relationship for validating hydrological water balances will contribute to controlling uncertainties in estimating dam inflows during flood season in particular.

Estimating Evapotranspiration with the Complementary Relationship at Fluxnet Sites Over Asia (아시아 Fluxnet 자료를 활용한 보완관계 기반 증발산량 추정)

  • Seo, Hocheol;Kim, Jeongbin;Park, Hyesun;Kim, Yeonjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.303-310
    • /
    • 2017
  • Evapotranspiration is a significant hydrologic quantity for understanding the amount of available water resource evaluation, water balance analysis, water circulation and energy circulation. Various methods have been developed for estimating the evapotranspiration using data observed at meteorological observatories. Especially, the focus of methods has been on the complementary relationship that the actual evapotranspiration is equal to the difference between the twice of evapotranspiration in the wet condition and the potential evapotranspiration. The Granger and Gary (GG) method is an empirical formula that can be used to estimate the evapotranspiration using only empirical parameters based on the complementary relationship and using only the net radiation and temperature of the region. In this study, we compared the evapotranspiration data observed at 10 sites in Asia within the dataset of FLUXNET2015, with the evapotranspiration calculated by GG method. The evapotranspiration in inland area was estimated more accurately than that of coastal area. Simulated Annealing (SA) was used for the coastal area to modify the parameters. Using the modified GG method, we could improve the statistics such as root mean square error, the coefficient of determination ($R^2$), and the mean absolute ${\mid}BIAS{\mid}$ of the evapotranspiration estimation in coastal area.

Climate Change and Soil-Water Balance

  • Aydin, Mehmet;Yano, Tomohisa;Haraguchi, Tomokazu;Evrendilek, Fatih;Jung, Yeong-Sang
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.7-10
    • /
    • 2011
  • The semi-arid and arid regions comprise almost 40 percent of the world's land surface. The low and erratic precipitation pattern is the single most significant contributor for limiting crop production in such regions where rainfall is the source for surface, soil and ground water. In a changing climate, the semi-arid and arid regions would increasingly face the challenge of water scarcity. According to the relevant literature; under the assumption of a doubling of the current atmospheric CO2 concentration, irrigation demand was estimated to increase for wheat and to decrease for second crop maize in a Mediterranean environment of Turkey in the 2070s. Crop evapotranspiration would decrease due to stomata closure. Reference evapotranspiration and potential soil evaporation were projected to increase by 8.0 and 7.3%, respectively, whereas actual soil evaporation was predicted to decrease by 16.5%. Drainage losses below 90 cm soil depth were found to decrease mainly due to lesser rainfall amount in the future.

  • PDF

Poential evapotranspiration analysis of suweon area (수원지방(水原地方)의 증발산량(蒸發散量) 분석(分析))

  • Shin, Yong Hwa;Hwang, Gye Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.47-55
    • /
    • 1976
  • This study is conducted to find out potential evapotranspiration values computed by a reasonable formula which is well suited among the existing ones for Suweon area. Each formula based on the data from Suweon Agricultural Meteorological Station during 1964 to 1973. Five formulas which are Blanney-Criddle, Thornthwaite, Penman, Jensen-Haise and Truc have been applied for calculation of potential evapotanspiration. Results obtained are summarized as follows. 1. Potential evapotranspiration of Suweon area shows uni-modal distribution which maximum value occurs in summer and minimum value occurs in winter. Annual potential evapotranspiration computed by Blanney-Criddle formula is 1,377 mm and that computed by others ranges from 714mm to 896mm. 2. Potential evapotranspiration computed by Blanney-Criddle formula is higher value than that computed by others, and among the other formulas it's values show little differences. However, relationships between the former and the mean of four others is highly correlated. 3. In comparison with potential evapotranspiration computed by formulas and actual evapotranspiration for rice paddy which is already reported, value for crop coefficient may be 0.8 in local varities, 1.0 in Tongil varity on Blanney-Criddle formula, and 1.2 in local varities and 1.5 in Tongil varity on the mean of four other fomulas. 4. Five formulas may applied for calculation of potential evapotranspiration because of relatively good correlation among them. However Blanney-Criddle formula is one of recommendable ones, because it is easy to compute and requires less data in compare with other formulas.

  • PDF

A study on potential water condition of Honam region according to water budget analysis (수분수지 분석을 통한 호남지역의 잠재적 물 사정 고찰)

  • Park, Eui-Joon;Lee, Jeong-Rock
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.3
    • /
    • pp.44-58
    • /
    • 2001
  • The purpose of this study is to investigate the potential water condition of Honam region according to water budget analysis. For this purpose, the eight regions (Suncheon, Gwangju, Jhangheung, Damyang, Mokpo, Yosu, Huksando, Namwon) are selected as study area. The result is as follows. (1) The water surplus indicating the potential water condition is ordered as Yosu, Sunchon, Changhung, Namwon, Damyang, Huksando, Kwangju, Mokpo. So the potential water condition of Kwangju and Mokpo is worst among study regions. (2) The high water surplus region is corresponded to high precipitation and low actual evapotranspiration legions. (3) The potential water condition is to agree with several facts about the water resource condition of Honam region. For example, large scale dam of Honam region has been constructed for Kwangju and Mokpo city. This fact indicates that the potential water condition calculated by water budget analysis is corresponded to actual water resource condition. (4) Consequently, the water budget analysis is effective method for investigating the actual water condition and establishing the water resource management of specific regions.

  • PDF

Complementary Relationship Based Evaportranspiration Estimation Model Suitable for the Hancheon and Kangjeongcheon Watersheds in Jeju Island (제주 한천 및 강정천 유역에 적합한 보완관계법 기반 증발산량 산정 모형)

  • Kim, Nam Won;Nah, Hanna;Lee, Jeongwoo;Lee, Jeong Eun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1155-1163
    • /
    • 2014
  • The complementary relationship-based evapotranspiration models, namely, AA model of Brutsaert and Stricker (1979) and the CRAE model of Morton (1983) was applied to two permanent stream watersheds Jeju island for the first time, and their major optimal parameters were suggested in this study. The representative watersheds for model calibration and validation were selected as the Hancheon watershed located in the northern part of the Jeju island and and the Kangjeongcheon watershed in southern Jeju island, respectively. The estimated actual evapotranspiration for the Hancheon watershed was compared with the result by the hydrological model, and the major parameters of the AA and CRAE models were calibrated until their results match the hydrological simulations. Through the iterative estimations, the optimal parameters were determined as ${\alpha}=1.00$, $M=30.0Wm^{-2}$ of the AA model, and $b_1=33.0Wm^{-2}$, $b_2=1.02$ of the CRAE model. The calibrated AA and CRAE models were applied to the Kangjeongcheon watershed for model validation, and it was found out that both models can accurately produce the actual evaporation on annual and semiannual bases.

The Effect of Adjustment factor(c) in Penman Equation -For Paddy in Suwon- (Penman식에서 보정계수 (C)가 잠재증발산량에 미치는 효과 -수원지방의 수도에대하여-)

  • 정하우;김성준;임정남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.51-57
    • /
    • 1988
  • The purpose of this paper is to know the effect of Adjustment factor (C) in Penman equation In the modified Penman equation by Doorenbos and Pruitt (1977), Potential Evapotranspiration(PET) was calculated in cases of (1) neglecting Adjustment factor (C=1, 0, A), (2) fixing Day/Night wind ratio (URATIO) to 2.0(B-l) and computing daily URATIO (B-2), and was compared with Actual Evapotranspiration (AET) for paddy fields in Suwon (1985-1986). The followings are a summary of this study results ; 1. Using 1985-1986 meteorological data, daily average PET in cases of A, B-i, B-2 were 4.61 mm/day, 4.81 mm/day and 5.36 mm/day respectively and daily average AET was 4.26 mm/day. The increment ratios of PET based on case A were 100%, 104.34% and 116.27% 2. The range of Adjustment factor (C) in cases of B-i, B-2 were 0.916-1.140 and 0.922-1.392 respectively. 3. The regression coefficient(r) between AET and PET in cases of A, B-i, B-2 were 0.928, 0.924 and 0.915 respectively.

  • PDF