• Title/Summary/Keyword: Actual Load

Search Result 1,392, Processing Time 0.029 seconds

A Study on Design Optimization of an Axle Spring for Multi-axis Stiffness (다중 축 강성을 위한 축상 스프링 최적설계 연구)

  • Hwang, In-Kyeong;Hur, Hyun-Moo;Kim, Myeong-Jun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2017
  • The primary suspension system of a railway vehicle restrains the wheelset and the bogie, which greatly affects the dynamic characteristics of the vehicle depending on the stiffness in each direction. In order to improve the dynamic characteristics, different stiffness in each direction is required. However, designing different stiffness in each direction is difficult in the case of a general suspension device. To address this, in this paper, an optimization technique is applied to design different stiffness in each direction by using a conical rubber spring. The optimization is performed by using target and analysis RMS values. Lastly, the final model is proposed by complementing the shape of the weak part of the model. An actual model is developed and the reliability of the optimization model is proved on the basis of a deviation average of about 7.7% compared to the target stiffness through a static load test. In addition, the stiffness value is applied to a multibody dynamics model to analyze the stability and curve performance. The critical speed of the improved model was 190km/h, which was faster than the maximum speed of 110km/h. In addition, the steering performance is improved by 34% compared with the conventional model.

Evaluation of Seismic Performance of Pile-supported Wharves with Batter Piles through Response Spectrum Analysis (응답스펙트럼해석을 통한 경사말뚝이 설치된 잔교식 안벽의 내진성능 평가)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, JongKwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.57-71
    • /
    • 2021
  • The pile-supported wharf is the port structure in which the upper deck is supported by piles or columns. By installing batter piles in this structure, horizontal load such as earthquake loads can be partially delivered as axial forces. The codes suggests using the response spectrum analysis as a preliminary design method for seismic design of pile-supported wharf, and suggests modeling the piles using virtual fixed points or soil spring methods for this analysis. Recently, several studies have been conducted on pile-supported wharves composed of vertical piles to derive a modeling method that appropriately simulates the dynamic response of structures during response spectrum analysis. However, studies related to the response spectrum analysis of pile-supported wharves with batter piles are insufficient so far. Therefore, this study performed the dynamic centrifuge model test and response spectrum analysis to evaluate the seismic performance according to the modeling method of pile-supported wharves with batter piles. As a result of test and analysis, it is confirmed that modeling using the Terzaghi (1955) constant of horizontal subgrade reaction (nh) most appropriately simulates the actual response in the case of the pile-supported wharf with batter piles.

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.

A study on the field application of high strength steel pipe reinforcement grouting (고강도 강관 보강 그라우팅의 현장 적용성에 관한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ryu, Yongsun;Kim, Donghoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.455-478
    • /
    • 2019
  • In this paper, we conducted experimental investigation on the field applicability through the verification of reinforcement effect of the steel pipe reinforcement grouting using high strength steel pipe. SGT275 (formerly known as STK400) steel pipe is generally applied to the traditional steel pipe reinforcement grouting method. However, the analysis of tunnel collapse cases applying the steel pipe reinforcement grouting shows that there are cases where the excessive bending and breakage of steel pipe occur. One of the reasons causing these collapses is the lack of steel pipe stiffness responding to the loosening load of tunnels caused by excavation. The strength of steel pipe has increased due to the recent development of high strength steel pipe (SGT550). However, since research on the reinforcement method considering strength increase is insufficient, there is a need for research on this. Therefore, in this study, we conducted experiments on the tensile and bending strength based on various conditions between high strength steel pipe, and carried out basic research on effective field application depending on the strength difference of steel pipe through the conventional design method. In particular, we verified the reinforcement effect of high strength steel pipe through the measurement results of deformed shape and stress of steel pipe arising from excavation after constructing high strength steel pipe and general steel pipe at actual sites. The research results show that high strength steel pipe has excellent bending strength and the reinforcement effect of reinforced grouting. Further, it is expected that high strength steel pipe will have an arching effect thanks to strength increase.

Teaching and Learning of University Calculus with Python-based Coding Education (파이썬(Python) 기반의 코딩교육을 적용한 대학 미적분학의 교수·학습)

  • Park, Kyung-Eun;Lee, Sang-Gu;Ham, Yoonmee;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.163-180
    • /
    • 2019
  • This study introduces a development of calculus contents which makes to understand the main concepts of calculus in a short period of time and to enhance problem solving and computational thinking for complex problems encountered in the real world for college freshmen with diverse backgrounds. As a concrete measure, we developed 'Teaching and Learning' contents and Python-based code for Calculus I and II which was used in actual classroom. In other words, the entire process of teaching and learning, action plan, and evaluation method for calculus class with Python based coding are reported and shared. In anytime and anywhere, our students were able to freely practice and effectively exercise calculus problems. By using the given code, students could gain meaningful understanding of calculus contents and were able to expand their computational thinking skills. In addition, we share a way that it motivated student activities, and evaluated students fairly based on data which they generated, but still instructor's work load is less than before. Therefore, it can be a teaching and learning model for college mathematics which shows a possibility to cover calculus concepts and computational thinking at once in a innovative way for the 21st century.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

Behavior Analysis of IPM Bridge and Rahmen Bridge (토압분리형 교량과 라멘교의 거동분석)

  • Shin, Keun-Sik;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.597-605
    • /
    • 2019
  • IPM bridge is an integral bridge that can be applied from span 30.0m up to 120.0m, the shape conditions of IPM bridge is also applicable to the rahmen bridge. In this study, to perform the structural analysis of Rahmen bridge and IPM Bridge, the researchers compared the distribution types such as load, moment, and displacement of those bridges. Structural analysis was carried out on four span models ranging from single span bridges to four spans of 120.0 m, based on span length of 30.0 m. Structural analysis was carried out on those bridge with span 30.0m up to 120.0m. The conclusions drawn from this study are as follows. 1) The bending moments were calculated to be large for the Rahmen bridge, and the horizontal displacements were estimated to be large for the IPM bridge. 2) Since the bending moments are derived by the span length rather than the extension of the bridge, the permissible bending moment for the span length should be considered in the design. 3) The pile bent of the IPM bridge did not exceed the plastic moment of the steel pipe pile at 120.0m span, but because the horizontal displacement in the shrinkage direction is close to 25mm, the design considerations are needed. 4) In the actual design, it is important to ensure stability against member forces, so review of the negative moment is most important.

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

Structural Design Optimization of Gageocho Jacket Structure Considering Unity Check (가거초 자켓 구조물의 허용응력비를 고려한 구조 최적설계)

  • Kim, Byungmo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.205-212
    • /
    • 2021
  • Offshore jacket structures generally comprise steel members, and the safety standard for jacket structures typically focuses on the steel components. However, large amounts of concrete grouting is filled in the legs of the Gageocho jacket structure to aid in the recovery from typhoon damage. This paper proposes a safe and lightweight design for the Gageocho ocean research station comprising steel members instead of large amounts of concrete reinforcement in the legs. Based on the actual design, the structural members are grouped according to their functional roles, and the inner diameter of the cross-section in each design group is defined as a design variable. Structural optimization is carried out using a genetic algorithm to minimize the total weight of the structure. To satisfy the conservative safety standards in the offshore field, both the maximum stress and the unity check criteria are considered as design constraints during optimization. For enhanced safety confidence, extreme environmental conditions are assumed. The maximum marine attachment thickness and the section erosion in the splash zone are applied. Additionally, the design load is defined as the force induced by extreme waves, winds, and currents aligned in the same direction. All the loading directions surrounding the structure are considered to design the structure in a balanced and safe manner. As a result, compared with the current structure, the proposed structure features a 45% lighter design, satisfying the strict offshore safety criteria.

Experimental Study on Deformation Resistance Capacity of SY Permanent Steel Form for RC Beam and Girder under Casting Concrete (SY 비탈형 보 거푸집의 콘크리트 타설시 변형저항성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.605-615
    • /
    • 2021
  • Recently, to shorten construction periods and reduce labor costs, the need for a corrugated beam form in the RC structure is being emphasized. The purpose of this study is to evaluate the deformation performance of SY Beam, a newly developed corrugated beam form work, during concrete casting. The standard cross-sectional shape of SY Beam was determined by modeling the deck structure of various thicknesses using the MIDAS GEN program. As a result, the cross-sectional dimensions of the SY Beam were determined to be 400mm and 450mm in width and height, respectively. A total of three SY Beam specimens were fabricated using steel plate thicknesses of 0.8, 1.0, and 1.2mm. The load conditions applied during casting concrete at the actual site are reflected. The vertical and horizontal displacements of the SY beam were measured during concrete casting. As a result, the vertical displacement showed a tendency to decrease as the thickness increased. Considering both vertical and horizontal displacement, the case with steel plate thickness of 1.2mm is the safest and most immediately applicable to the field. In the future, to secure manufacturability, constructability, and economics, the optimum steel plate thickness should be derived, and additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are required.