• Title/Summary/Keyword: Actomyosin contractility

Search Result 2, Processing Time 0.02 seconds

Effect of Aconiti tuber butanol fraction on the contractile proteins of myocardium (부자(附子) "부타놀" 분획(分劃)이 심근(心筋) 수축단백(收縮蛋白)에 미치는 영향(影響))

  • Yang, Kil-Sung;Park, Kil-Soo;Park, Chan-Woong;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.23-29
    • /
    • 1976
  • Aconiti tuber butanol fraction has been recently known to have stimulatory effect on myocardial contractility. In the present study, the possibility that the Aconiti tuber butanol fraction acts directly on contractile proteins of myocardium has been investigated using natural actomyosin extracted from dog heart. It revealed that Aconiti tuber butanol fraction in concentrations from $10^{-2}{\sim}10^{-7}\;gm/ml$ had no stimulatory effect on either the $Mg^{++}$ or $Ca^{++}$-activated adenosinetriphosphatase activity of cardiac actomyosin. And no direct $Ca^{++}$-like action of the drug on cardiac actomyosin was also found. Aconiti tuber butanol fraction in concentrations above $10^{-4}\;gm/ml$, however, was somewhat stimulatory on superprecipitation of actomyosin and markedly inhibited the membrane bound $Na^+-K^+$-activated ATPase activity. In these connections, the positive inotropic action of Aconiti tuber butanol fraction on myocardium thus does not seem to reflect a direct interaction with contractile proteins, but the drug seem to stimulate myocardial contractility through the actions on the membrane transport of $Ca^{++}$.

  • PDF

Force-mediated proinvasive matrix remodeling driven by tumor-associated mesenchymal stem-like cells in glioblastoma

  • Lim, Eun-Jung;Suh, Yongjoon;Kim, Seungmo;Kang, Seok-Gu;Lee, Su-Jae
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.182-187
    • /
    • 2018
  • In carcinoma, cancer-associated fibroblasts participate in force-mediated extracellular matrix (ECM) remodeling, consequently leading to invasion of cancer cells. Likewise, the ECM remodeling actively occurs in glioblastoma (GBM) and the consequent microenvironmental stiffness is strongly linked to migration behavior of GBM cells. However, in GBM the stromal cells responsible for force-mediated ECM remodeling remain unidentified. We show that tumor-associated mesenchymal stem-like cells (tMSLCs) provide a proinvasive matrix condition in GBM by force-mediated ECM remodeling. Importantly, CCL2-mediated Janus kinase 1 (JAK1) activation increased phosphorylation of myosin light chain 2 in tMSLCs and led to collagen assembly and actomyosin contractility. Collectively, our findings implicate tMSLCs as stromal cells providing force-mediated proinvasive ECM remodeling in the GBM microenvironment, and reminiscent of fibroblasts in carcinoma.