• Title/Summary/Keyword: Activity Monitor

Search Result 367, Processing Time 0.023 seconds

Physiologic state and behavioral response to sponge bathing in premature infants (스폰지 목욕에 대한 미숙아의 생리적상태 및 행동반응)

  • Lee Hae Kyung;Hong Kyung Ja;Nam Eun Sook;Lee Young Hee;Jung Eun Ja
    • Child Health Nursing Research
    • /
    • v.6 no.1
    • /
    • pp.32-50
    • /
    • 2000
  • A descriptive exploratory design was used in this study to evaluate the effects of sponge bathing on physiological(heart rate, heart period, vagal tone, oxygen saturation, respiration) and behavioral responses in newly born 40 preterm infants from intensive care unit of S University Hospital in Seoul. Data has been collected from October, 1997 to March, 1999. The infants were between 27-33 weeks gestational age at birth, and were free of congenital defects. The subjects entered the protocol when they were medically stable (determined by initiation of feeding and discontinuation of all respiratory support) but still receiving neonatal intensive care. The infants' physiologic parameters were recorded a 10 - minute before, during, and after bathing. Continuous heart rate data were recorded on a notebook computer from the infant's EKG monitor. The data were digitized off-line on software(developed by Lee and Chang in Wavelet program) which detected the peak of the R wave for each heart beat and quantified sequential R-R intervals in msec(i.e. heart periods). Heart period data were edited to remove movement artifact. Heart period data were quantified as : 1) mean heart period; 2) vagal tone. Vagal tone was quantitfied with a noninvasive measure developed by Porges(1985) in Mxedit software. To determine behavioral status, tools were developed by Scafidi et al(1990) were used. Collected data were analyzed with the SPSS program using paried t-test, ANOVA, and Pearson correlation. The result were as follow. 1. The results of the ANOVAs indicated that vagal tone were signifcantly lower during bathing than baseline and post-bathing. There were significant differences in heart period and heart rate levels across the bathing. But the mean oxygen saturations and respirations were no differences. Also, there were no significant differences on behavioral sign, motor activity, behavioral distress, weight changes, morbidity, and hospitalization period. 2. To evaluate the relation between vagal tone and subsequent parameters, the two groups (the high group had 19 subjects and low group had 21subjects) were divided by the mean baseline vagal tone. Vagal tone measured prior to bathing were significantly associated with respiration before bathing, vagal tone during bathing, and the magnitude of change in both vagal tone. But, other subsequent reactivities were no differences in two groups. 3. Correlations were also calculated between vagal tone and the subsequent physiological reactivities from baseline through after- bathing. Correlations were significant between baseline vagal tone and baseline heart rate, between baseline vagal tone and baseline heart period, between baseline vagal tone and oxygen saturation after bathing. In summary, the bathing in this study showed a stressful stimulus on premature infants through there was significance in the physiological parameters. In addition, our study represents the documentation that vagal tone reactivity in response to clearly defined external stimulation provides an index of infant's status.

  • PDF

Optimization of Extraction Condition on Fig (Ficus carica L.) by Response Surface Methodology (반응표면분석법에 의한 무화과 열수 추출조건의 최적화)

  • Kim, Jung-Ok;Kwon, Soon-Tae;Lee, Gee-Dong;Hong, Joo-Heon;Moon, Doo-Hwan;Kim, Tae-Wan;Kim, Dae-Ik
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.66-73
    • /
    • 2008
  • Response surface methodology (RSM) was applied for monitor the yields of desirable substances from fig (Ficus carica L) under different extraction conditions. The maximum yield was 66.46% at 22.08 mL/g of solvent to sample ratio, $90.59^{\circ}C$ extraction temperature and 148.04 min extraction time. The maximum total phenolics was $121.31{\mu}g/mL$ at 17.87 mL/g, $98.82^{\circ}C$, and 130.80 min. The maximum electron donating ability was 54.09% at $121.31{\mu}g/mL$, 18.13 mL/g, and $98.81^{\circ}C$. The maximum value of protease activity was 54.51 unit/min at 17.45 mL/g, $99.01^{\circ}C$, and 131.43 min. In addition, the maximum value of reducing sugar content was 19.14 mg/mL in 22.66 mL/g, $86.30^{\circ}C$, and 153.59 min. The optimum conditions estimated by RSM for maximal extraction of the effective components were $17{\sim}25$ mL/g of solvent to sample ratio, $80{\sim}100^{\circ}C$ of extraction temperature, and $100{\sim}170$ min of extraction time.

Air Temperature Decreasing Effects by Shading and Ventilation at Micro-scale Experiment Plots (소공간 실험구의 차광과 통풍에 의한 기온저감 효과)

  • Kim, Hyun-Cheol;Woo, Ji-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.39-48
    • /
    • 2010
  • The purpose of this study was to analyze air temperature decreasing effects by shading and ventilation at micro-scale experiment plots, especially focused on the Wet Bulb Globe Temperature (WBGT) in outdoor spaces. To monitor the time-serial changes of Dry-bulb Temperature (DT), Globe Temperature (GT) and Relative Humidity (RH) in the wind blocking and shading conditions, Two hexahedral steel frames were established on the open grass field, the dimension of each frame was 1.5m(W)${\times}$1.5m(L)${\times}$1.5m(H). Four vertical side of one frame was covered by transparent polyethylene film to prevent wind passing through (Wind break plot; WP). The top side of the other frame was covered with shading curtain which intercept 95% of solar light and energy (Shading plot; SP). And, Another vertical steel frame without any treatment preventing ventilation and sunlight was set up, which represents natural conditions (Control plot; CP). The major findings were as follows; 1. The average globe temperature (GT) was highest at WP showing $50.94^{\circ}C$ and lowest at SP showing $34.58^{\circ}C$. The GT of natural condition (SP) was $42.31^{\circ}C$ locating the midst between WP and SP. The difference of GT of each plot was about $8-16^{\circ}C$, which means the ventilation and shading has significant effect on decreasing the temperature. 2. WP showed the highest average dry-bulb temperature (DT) of $38.41^{\circ}C$ which apparently differ from SP and CP showing $31.94^{\circ}C$ and $33.15^{\circ}C$ respectively. The DT of SP and CP were nearly the same. 3. The average relative humidity (RH) was lowest at WP showing 15.21%, but SP and CP had similar RH 28.79%, 28.02% respectively. 4. The average of calculated WBGT were the highest at the WP ($27.61^{\circ}C$) and the lowest at the SP ($23.64^{\circ}C$). The CP ($25.49^{\circ}C$) was in the middle of the others. As summery, compared with natural condition (CP), the wind blocking increased about $2.11^{\circ}C$ WBGT, but the shading decreased about $1.84^{\circ}C$ WBGT. So It can be apparently said that the open space with much shading trees, sheltering furnitures and well-delivered wind corridor can reduce useless and even harmful energy for human outdoor activity considerably in outdoor spaces.

Difference of Facial Skin Temperature Responses between Fear and Joy (공포와 기쁨 정서 간 안면온도 반응의 차이)

  • Eum, Yeong-Ji;Eom, Jin-Sup;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • There have been many emotion researches to investigate physiological responses on specific emotions with physiological parameters such as heart rate, blood volume flow, and skin conductance. Very few researches, however, exists by detecting them with facial skin temperature. The purpose of present study was to observe the differences of facial skin temperature by using thermal camera, when participants stimulated by monitor scenes which could evoke fear or joy. There were totally 98 of participants; undergraduate students who were in their adult age and middle, high school students who were in their adolescence. We measured their facial temperature, before and after presenting emotional stimulus to see changes between both times. Temperature values were extracted in these regions; forehead, inner corners of the eyes, bridge of the nose, end of the nose, and cheeks. Temperature values in bridge and end of the nose were significantly decreased in fear emotion stimulated. There was also significant temperature increase in the area of forehead and the inner corners of the eyes, while the temperature value in end of the nose decreased. It showed decrease in both stimulated fear and joy. These results might be described as follows: When arousal level going up, sympathetic nervous activity increases, and in turn it makes blood flow in peripheral vessels under the nose decrease. Facial temperature changes by fear or joy in this study were the same as the previous studies which measured temperature of finger tip, when participants experiencing emotions. Our results may help to develop emotion-measuring techniques and establish computer system bases which are to detect human emotions.

  • PDF

Exposure Characteristics of Construction Painters to Organic Solvents

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-Kil
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Background: Construction painters have not been studied well in terms of their hazards exposure. The objective of this study was to evaluate the exposure levels of total volatile organic compounds (TVOCs) for painters in the construction industry. Methods: Activity-specific personal air samplings were carried out in three waterproofing activities [polyurethane (PU), asphalt, and cement mortar] and three painting activities (epoxy, oil based, and water based) by using organic-vapor-monitor passive-sampling devices. Gas chromatograph with flame ionization detector could be used for identifying and quantifying individual organic chemicals. The levels of TVOCs, by summing up 15 targeted substances, were expressed in exposure-index (EI) values. Results: As arithmetic means in the order of concentration levels, the EIs of TVOCs in waterproofing works were 10.77, 2.42, 1.78, 1.68, 0.47, 0.07, and none detected (ND) for indoor PU-primer task, outdoor PU-primer task, outdoor PU-resin task, indoor PU-resin task, asphalt-primer task, asphalt-adhesive task, and cement-mortar task, respectively. The highest EI for painting works was 5.61 for indoor epoxyprimer task, followed by indoor epoxy-resin task (2.03), outdoor oil-based-spray-paint task (1.65), outdoor water-based-paint task (0.66), and indoor oil-based-paint task (0.15). Assuming that the operations were carried out continuously for 8 hours without breaks and by using the arithmetic means of EIs for each of the 12 tasks in this study, 58.3% (7 out of 12) exceeded the exposure limit of 100% (EI > 1.0), while 8.3% (1 out of 12) was in 50e100% of exposure limit (0.5 > EI > 1.0), and 4 tasks out of 12 were located in less than 50% of the limit range (EI < 0.5). Conclusion: From this study, we recognized that construction painters are exposed to various solvents, including carcinogens and reproductive toxins, and the levels of TVOC concentration in many of the painting tasks exceeded the exposure limits. Construction workers need to be protected from chemical agents during their painting works by using personal protective devices and/or work practice measures. Additional studies should focus on the exposure assessment of other hazards for construction workers, in order to identify high-risk tasks and to improve hazardous work environments.

A Study on Development of Robot - based Teaching-Learning Model for Improving Creativity (창의력 향상을 위한 로봇활용 교수 - 학습모형 개발 연구)

  • Jun, Woochun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.99-105
    • /
    • 2015
  • Currently robots are widely used in schools for educational purpose. With wide spread of robot-based education, it is known that major advantage of robot-based education is to enhance creativity and logical thinking of students. Although robots can be very useful tools for assisting students' study activities, there have not been lots of teaching-learning models for robot-based education.In this paper, a teaching-learning model is presented for robot-based education. The proposed model is designed based on constructivism. The proposed model consists of 6 stages: preparation, design, assembling, demonstration run, evaluation, and application & extension. The proposed model has the following characteristics. First, the proposed model is designed to enhance creativity and logical thinking ability of learners. Learners are supposed to be involved in self-directed activities and required to provide results based on their own ideas. Teachers are supposed to mediate students only if necessary. Second, learners are encouraged to participate in activity via diverse interaction. The interaction in this model includes learner-to-learner interaction, learner-to-teacher interaction, and learner-to-expert interaction. The proposed model encourages learners to solve the problem with cooperating each other. Also, teachers are supposed to guide students if necessary and observe and monitor behavior of students all the time. Third, motivation is provided in the beginning stage of the instruction. Fourth, in the proposed model, both study results and study process are equally important. In the model, study process is reviewed at the final stage.

Principal Component analysis based Ambulatory monitoring of elderly (주성분 분석 기반의 노약자 응급 모니터링)

  • Sharma, Annapurna;Lee, Hoon-Jae;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2105-2110
    • /
    • 2008
  • Embedding the compact wearable units to monitor the health status of a person has been analysed as a convenient solution for the home health care. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring of the elderly and people with limited mobility can not only provide their general health status but also alarms whenever an emergency such as fall or gait has been occurred and a help is needed. A timely assistance in such a situation can reduce the loss of life. This work shows a detailed analysis of the data received from a chest worn sensor unit embedding a 3-axis accelerometer and depicts which features are important for the classification of human activities. How to arrange and reduce the features to a new feature set so that it can be classified using a simple classifier and also improving the classification resolution. Principal component analysis (PCA) has been used for modifying the feature set and afterwards for reducing the size of the same. Finally a Neural network classifier has been used to analyse the classification accuracies. The accuracy for detection of fall events was found to be 86%. The overall accuracy for the classification of Activities or daily living (ADL) and fall was around 94%.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Association of the Risk of Leukemia and Non-Hodgkin's Lymphoma (NHL) with Environmental Agents (모 지역의 소아 백혈병 및 악성림프종 발병 사례와 환경적 요인의 연관성 조사)

  • Park, Dong-Uk;Choi, Sangjun;Youn, Kanwoo;Kim, So-Yeon;Kim, Hee-Yun;Park, Yun-Kyung;Kim, Won;Iim, Sanghyuk;Park, Jihoon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.203-212
    • /
    • 2019
  • Objective: A total of five students at same middle school were reported to be diagnosed with pediatric leukemia (n=2), non-Hodgkin's lymphoma (NHL, n=1) and aplastic anemia (n=2) between 2016 and 2017. The aims of this study are to assess exposure to environmental hazardous agents known to be associated with the risk of leukemia and to examine whether the environment of school is associated with the risk leukemia. Method: A total of 11 environmental agents causing childhood leukemia were monitored using international certified method in schools where patients had ever attended. Radon & Thoron detector was used to monitor real-time airborne radon and thoron level ($Bq/m^3$). Clinician interviewed two among nine patients who agreed to participate in this study in order to examine the association of demographic and genetic factors by individually. Leukemia, NHL, and aplastic anemia were grouped into lymphohematopoietic disorder (LHP). Results: Except for airborne radon level, no environmental agents in school and household where patients may be exposed were found to higher than recommended airborne level. Clinical investigation found no individual factors that may be associated with the risk of LHP. Higher airborne radon level than Korea EPA's airborne radon criteria ($148Bq/m^3$) was monitored at most of several after-class room of one elementary school, where two leukemia patients graduated. Significant radon level was not monitored at class-room. Significant exposure to radon of patients was not estimated based on time-activity pattern. Conclusions: Our results have concluded that there have been no environmental factors in school and household environment that may be associated the risk of LHP.

Architecture Model of IOT Based Smart Animal Farms in Pakistan (파키스탄에서 IOT에 기반한 스마트 동물 농장의 아키텍처 모델)

  • Mateen, Ahamed;Zhu, Qingsheng;Afsar, Salman;Nazeer, Farah
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.43-52
    • /
    • 2018
  • Livestock production is the second largest economic activity of Pakistan's rural population, more specifically; sixty-seven percent of Pakistan's total population that live in rural areas sources their income from livestock activities. As this subsector of agriculture within rural Pakistan is so critical to Pakistan's economy it is especially important to further develop the sector through the introduction of cost effective, efficient, and practical technologies. In an effort to improve such an important sector within the agriculture sector in Pakistan research has been carried out to better understand the capabilities and feasibility of leveraging Internet of Things based technologies, such as, microprocessors and microcontrollers within Pakistan's livestock production and management. The internet of Things can potentially allow for the scaling of small-scale rural livestock production to larger operations through cost effective and efficient livestock management through the application of IoT technologies. This paper discusses the architecture models of IoT based smart animal farms and delves into the pitfalls and advantages of applying IoT technologies in this sector. In this work we will explore the cheap sensors to monitor the internal activities of cattle farm with the aim of using these sensors as part of system to detect the important operations that need on the time response. This system should provide the feed and water as required, and control the temperature in sheds to protect the cattle being ill and on heat, and humidity level .internet connection used to connect these devices with smartphones or computers. In this paper we proposed the architecture model of IoT based smart animal farm.