• Title/Summary/Keyword: Active source

Search Result 1,445, Processing Time 0.035 seconds

A Study on the Clothing Involvement, Shopping Orientation and Clothing Purchasing Behavior According to the Types of Information Source Usage (여성 구매자의 정보원 활용 유형에 따른 의복관여도 및 쇼핑성향과 의복 구매행동에 관한 연구)

  • Lim, Kyung-Bock
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.9 no.1
    • /
    • pp.221-234
    • /
    • 2007
  • The purposes of this study were to identify the effect of clothing involvement and shopping orientations on the usage of information sources and to investigate the differences of clothing involvement, shopping orientation and clothing purchasing behavior according to the types of information source usage. The study subjects comprised 302 females living in Seoul. The datas were analyzed with factor analysis, regression, ANOVA, discriminant analysis, and $x^2$-test. The results generated from this study are as follows: First, clothing involvement and shopping orientation factors influenced the usage of information source. Among the clothing involvement factors, fashion/clothing involvement was the most important factor to the types of information source. Second, according to usage of information sources, female consumers were classified into four groups, such as active, nonpersonal, personal, and non-active information source usage group. Fashion/clothing involvement was the most significant involvement factor to divide four groups. Third, among the demographic variables, only age was the useful factor which can differ the usage of information source. For example, 30s' were more active than other groups, on the other hand 50s' use personal information source more than other groups. Therefore, marketer should blow consumer's clothing involvement and shopping orientation which are effective to the usage of information source, and use this knowledge on the advertising and marketing plan.

  • PDF

Effectiveness of Active Noise Control through Three-Dimensional Sound (입체음향 제작기법을 통한 능동소음제어 방법의 효율성)

  • Park, Junhong;Kim, Junejong;Min, Dongki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.955-956
    • /
    • 2014
  • Active noise control is noise reduction method by generate anti-phase control signal for destructive interference of through control speaker. purpose of this paper is create a virtual control source at a using the DBAP(Distance Based Amplitude Panning) algorithm which is one of the three-dimensional sound reproduction method, and verified through the experimentally for noise control method through the virtual control source. We compared active noise method by using one control speaker with active noise control method by using DBAP algorithm.

  • PDF

A Parallel Operation System of the Z-Source Active Power Filter with Fuel Cells System (연료전지 Z-소스 능동전력필터의 병렬운전 시스템)

  • Oum, J.H.;Jung, Y.G.;Lim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.372-375
    • /
    • 2006
  • This paper proposes a parallel operation system of the Z-source active power filter using one fuel cells(FC) system. The proposed system is composed of two Z-source inverters operating in parallel only one PEM(Polymer Electrolyte Membrane)FC system. Also, as the control algorithm of the active power filter, a single phase P-Q theory and PI control are adopted. The effectiveness of the proposed the system is verified by the PSIM simulation in the steady state and the transient state.

  • PDF

Detection Range Estimation Algorithm for Active SONAR System and Application to the Determination of Optimal Search Depth (능동 소나 체계에서의 표적 탐지거리 예측 알고리즘과 최적 탐지깊이 결정에의 응용)

  • 박재은;김재수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.62-70
    • /
    • 1994
  • In order to estimate the detection range of a active SONAR system, the SONAR equation is commonly used. In this paper, an algorithm to calculate detection range in active SONAR system as function of SONAR depth and target depth is presented. For given SONAR parameters and environment, the transmission loss and background level are found, signal excess is computed. Using log-normal distribution, signal excess is converted to detection probability at each range. Then, the detection range is obtained by integrating the detection probability as function of range for each depth. The proposed algorithm have been applied to the case of omni-directional source with center frequency 30Hz for summer and winter sound profiles. It is found that the optimal search depth is the source depth since the detection range increase at source depth where the signal excess is maximized.

  • PDF

The Controllable Current-Source Active Power Filter (가변 전류형 능동 전력 필터)

  • Kim, Ho-Jin;Cho, Han-Duk;Kim, Hong-Seong;Choe, Gyu-Ha;Kim, Han-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1077-1080
    • /
    • 1992
  • In this paper suggested methods for current control in active filter are using the triangular carriers which were composed of independently generated threefold carriers and controllable current source which compensates the harmonics generated independently from the types of the load with instantaneous amplitude adjusting from the maximum magnitude of the compensating currents. And the 2-nd order high pass passive filter connected to the source finally supplies pure sinusoidal waves by suppressing the residual harmonics which cannot removed by the active filter. As the typical load which generates the harmonics, a rectifier was set and the system was also designed by simulations and implementations.

  • PDF

New Driving Method of High Brightness LED Backlight Using Active Current Source

  • Hwang, S.;LEE, J.;Lim, S.;Oh, M.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1642-1645
    • /
    • 2007
  • The brightness of LED changes according to the current flowing through LEDs. The current mirror was used to drive LEDs effectively. The reference current of the current mirror was usually controlled by the resistor but the size of this resistor is very large and this resistor consumes too much power for high power LED backlight driving. The reference current of the current mirror LED driver was controlled by using flyback converter at small size with low power consumption in this paper. The concept of active current source was presented.

  • PDF

Noise identification on active circuits and reduction using MPM technique (능동회로에서의 노이즈 규명 및 MPM기법을 통한 저감)

  • Oh, K.S;Lee, J.B.;Ko, I.K.;Heo, H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3063-3065
    • /
    • 2005
  • In the raper, the noise involved on the active circuit is identified using correlation function. In order to identify the unknown noise source location, signals from each points on the system are detected and the location is identified by a concept calico Noise Source Surface. The fault diagnosis method is suggested for each element by identifying the noise source in active circuit using SVM. Experiment is conducted to confirm the validity of the proposed method. Also a method to reduce and control the noise in the system signal by using Matrix Pencil Method is introduced.

  • PDF

Active Noise Cancellation using a Teacher Forced BSS Learning Algorithm

  • Sohn, Jun-Il;Lee, Min-Ho;Lee, Wang-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.224-229
    • /
    • 2004
  • In this paper, we propose a new Active Noise Control (ANC) system using a teacher forced Blind Source Separation (BSS) algorithm. The Blind Source Separation based on the Independent Component Analysis (ICA) separates the desired sound signal from the unwanted noise signal. In the proposed system, the BSS algorithm is used as a preprocessor of ANC system. Also, we develop a teacher forced BSS learning algorithm to enhance the performance of BSS. The teacher signal is obtained from the output signal of the ANC system. Computer experimental results show that the proposed ANC system in conjunction with the BSS algorithm effectively cancels only the ship engine noise signal from the linear and convolved mixtures with human voice.

Series Active Power Filters for Source Voltage Unbalance Compensation and Power Factor Correction (전원 불평형과 역률을 보상하는 직렬형 능동전력필터)

  • Jang, Jeong-Ik;Lee, Dong-Choon;Seok, Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.498-500
    • /
    • 2005
  • This paper presents a unified control scheme for series-type active power filters combined with shunt passive filters for the source voltage unbalance compensation and the power factor correction simultaneously. The power factor correction is achieved by controlling the amplitude of reactive power current in a series filter as zero in a synchronously rotating reference frame. The proposed algorithm successfully compensates the source voltage unbalance and the power factor. The validity of the proposed scheme has been verified by simulation for a 3-kVA hybrid active power filter system.

  • PDF

Development of Multi-Cell Active Switched- Capacitor and Switched-Inductor Z-Source Inverter Topologies

  • Ho, Anh-Vu;Chun, Tae-Won;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.834-841
    • /
    • 2014
  • This paper proposes new active switched-capacitor and switched-inductor Z-source inverter (ASC/SL-ZSI) topologies, which can provide a higher boost ability with a small shoot-through time. The proposed ASC/SL-ZSIs inherit all of the advantages of the classical ZSI, and have a stronger voltage boost inversion ability when compared with the classical ZSI. Thus, the output ac voltage quality is significantly improved. In addition, more cells can be cascaded in the impedance network in order to obtain a very high boost ability. The proposed topologies can be applied to photovoltaic or fuel-cell generation systems with low-voltage renewal sources due to their wide range of obtainable voltages. Both simulations and the experimental results are carried out in order to verify performance of the proposed topologies.