• Title/Summary/Keyword: Active snubber

Search Result 95, Processing Time 0.027 seconds

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

Development of Converter for High Frequency Welding Machines using Active Snubber (액티브 스너버를 이용한 고주파 용접기 컨버터 개발)

  • Shin, Jun-Young;Lee, Jae-Min;Choi, Seung-Won;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.351-355
    • /
    • 2016
  • Welding machines are high-capacity systems used in a low-frequency range using IGBT. As their system is similar to a large transformer, most welding machines suffer a great loss because of hard switching and vast leakage inductance. A voltage-balancing circuit is designed to overcome these shortcomings. This circuit can reduce the transformer size by making it into a high frequency and reducing the input voltage by half and by adopting a serial structure that connects two full-bridges in a series to use a MOSFET with a good property at high frequency. In addition, a Schottky diode is used in the primary rectifier to overcome the low efficiency of most welding machines. To use the Schottky diode with a reliably relatively low withstanding voltage, an active snubber is adopted to effectively limit the ringing voltage of the diode cut-off voltage.

Characteristics Analysis of Soft Switching PWM Converter Using a New Active Snubber (새로운 액티브 스너버를 이용한 소프트 스위칭 PWM 컨버터의 특성해석)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Ryong;Suh, Ki-Young;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.44-49
    • /
    • 2007
  • This paper proposes converter that new soft switching active snubber circuit is added, the resonance energy return to life rate doing maximum whole efficiency increase. Proposed converter adds auxiliary switch and resonance inductor, resonance capacitor, two diodes to existing converter, all switch elements play turn-on/turn-off under soft switching condition and minimized switching losses. Conduction loss department is that watch layer bringing back to life resonance energy by input perfectly. These result proved through simulation and an experiment.

High-Frequency Flyback Transformer Linked PWM Power Conditioner with An Active Switched Capacitor Snubber

  • Mun, Sang-Pil;Kim, Soo-Wook;Joo, Seok-Min;Park, Young-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.7-15
    • /
    • 2008
  • A single active capacitor snubber-assisted soft-switching sinewave pulse modulation utility-interactive power conditioner with a three-winding flyback high frequency transformer link and a bidirectional active power switch in its secondary side has been proposed. With the aid of the switched-capacitor quasi-resonant snubber cell, the high frequency switching devices in the primary side of the proposed DC-to-AC sinewave power inverter can be turned-off with ZVS commutation. In addition to this, the proposed power conditioner in the DCM can effectively take the advantages of ZCS turn-on commutation. Its output port is connected directly to the utility AC power source grid. At the end, the prototype of the proposed HF-UPC is built and tested in experiment. Its power conversion conditioning and processing circuit with a high frequency flyback transformer link is verified and the output sinewave current is qualified in accordance with the power quality guidelines of the utility AC interactive power systems.

A Simple Resonant DC Link Snubber-Assisted Bi-directional Three-phase PWM Converter for Battery Energy Storage Systems

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, a prototype of an active auxiliary quasi-resonant DC link (QRDCL) snubber assisted voltage source bidirectional power converter (AC to DC and DC to AC) operating at zero voltage soft-switching (BVS) PWM nlode is presented for a Battery Energy Storage System (BESS). The operating principle of this QRDCL circuit and multifunctional control-based converter system, including PWM inverter mode in which energy flows from the battery bank to the three-phase utility-grid in addition to an active PWM converter mode in which energy flows from the utility-grid to the battery banks are described respectively by the control implementation on the basis of d-q coordinate plane transformation. The multifunctional operation characteristics of this three-phase ZVS PWM bi-directional converter with QRDCL is demonstrated fer a BESS under the power conditioning and processing schemes of energy supply mode and energy storage mode, and compared with a conventional three-phase hard switching PWM bi-directional converter for a BESS. The effectiveness of the three-phase ZVS PWM hi-directional converter with QRDCL is proven via the simulation analysis.

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • Fathy, Khairy;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

Active CDS-Clamped L-Type Current-Fed Isolated DC-DC Converter

  • Nguyen, Minh-Khai;Duong, Truong-Duy;Lim, Young-Cheol;Choi, Joon-Ho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.955-964
    • /
    • 2018
  • In this paper, an active capacitor-diode-switch (CDS) snubber is proposed for L-type current-fed isolated DC-DC converters. The proposed CDS-clamped converter has a number of advantages. It can achieve wide range zero-voltage switching (ZVS) on two switches, a continuous input current with a low ripple, a reduction of one active switch and high efficiency. The operating principles, analysis and parameter design guideline are presented. A 300 W prototype is built to test the proposed converter. Simulation and experimental results are shown at 30 V input voltage and 400 V output voltage.

The Experimental Consideration of ZVT-PWM AC-DC Converter using Active Auxiliary Resonant Snubber (액티브 보조 공진 스너버를 이용한 ZVT-PWM AC-DC 컨버터의 실험적 고찰)

  • 서기영;문상필;김주용;박진민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 2004
  • Zero Voltage Transition Pulse Width Modulation (ZVT-PWM) converter with active snubber circuit was proposed on this paper. The converter that has been proposed snubber circuit can be operated at the condition of light load range, and this converter is turned on and off near by Zero Voltage Switching (ZVS) or Zero Current Switching (ZCS). If the stress of voltage and current are not occurred at the main switch and main diode, we subjected the allowed level of voltage and current on the auxiliary switch and auxiliary diodes. By proposed 750[W], 80[KHz] PWM boost converter to apply soft switching on the power of total output, the loss of main switch to compare with hard switching was reduced about 27[%], and the loss of total circuit was reduced about 36[%]. The total efficiency was increased about 6[%] to compare with general converter.

The Topology of Soft Switching Boost Type DC-DC Converter using a Passive Auxiliary Resonant Snubber (패시브 보조 공진 스너버를 이용한 소프트 스위칭 승압형 DC-DC 컨버터의 토폴로지)

  • Sung, Chi-Ho;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.146-152
    • /
    • 2015
  • In this paper, we propose a boost DC-DC converter using a modification of the passive auxiliary resonant snubber circuit with a DC-DC converter in a typical active auxiliary resonant snubber-bridge inverter. The proposed boost DC-DC converter is small compared to the DC-DC converter according to the soft-switching scheme that requires a general auxiliary switch by realizing the soft switching operation as a DC-DC converter which does not require an auxiliary switch. It is light-weight, switch the turn-on and turn-off switching loss at the time of the superposition of the voltage and current is extremely small, so small. And the reduction of the surge voltage and current of the switch. In addition, the proposed boost DC-DC converter has a high efficiency over a wide load characteristics change area than conventional hard switching PWM boost converter using an RC snubber loss.

Power Module Bridge Type Auxiliary Resonant AC Link Snubber-Assisted Three-Phase Soft Switching Inverter

  • Hisashi Iyomori;Nagai, Shin-ichiro;Masanobu Yoshida;Eiji Hiraki;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2004
  • This paper presents a novel three-phase power module bridge type auxiliary resonant AC link snubber for the three-phase voltage-fed sinwave soft switching PWM inverter operating under specific instantaneous space voltage vector modulation. The operating principle of this resonant snubber is described for current source load model during one switching period, along with its design approach based on the simulation data. The performance evaluations of space vector modulation three-phase sinewave soft switching inverter with a new three-phase active auxiliary resonant AC link snubber are discussed as compared with those of three-phase voltage source-fed sinewave hard switching PWM inverter with a standard space voltage vector modulation strategy. The power loss analysis and conventional efficiency estimation of three-phase soft switching PWM inverter using ICBT modules are carried out including all the conduction power losses based upon the measured v-i characteristics of IGBT and its antiparallel diode as well as their switching losses.