The purpose of this study is to development of a teaching-learning model for active learning in engineering education. For this, the adequacy between educational objectives and active learning activities is verified and furthermore an "active learning teaching-learning model" is suggested. This suggested teaching-learning model is expected to supplement weakness of traditional lecture-type teaching-learning activity. Based on the literature review, first, the representative activities of active learning were derived. there are twenty active learning activities, which compose of five of individual learning activity, five of pair-learning activity and five of group-learning activity, and five of alternative- learning activity. In addition, a survey on adequacy between designed active learning activities and learning outcomes were conducted to ten educational experts. Lawshe's content validity calculation method was applied to analyze the validity of this study. Second, five teaching-learning principles, such as thinking, interaction, expression, reflection, and evaluation were derived to develop an "active learning teaching-learning model" which supplements lecture-type classes and then the "TIERA teaching-learning model" which consists of five stages was designed. Finally, based on the survey on educational experts, adequate active learning activities were proposed to apply in each stage of the "TIERA teaching-learning model" and as a result the TIERA model's active learning activities were developed. The result of this study shows that some activities of active learning are appropriate to induce high cognitive learning skills from the learners even in traditional lecture-type classrooms and therefore this study suggests meaningful direction to new paradigm of teaching-learning for engineering education. This study also suggests that instructors of engineering education can turn their traditional teaching-learning activities into dynamic learning activities by utilizing "active learning teaching-learning model".
Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권10호
/
pp.2650-2662
/
2012
Due to the semantic gap issue, the performance of automatic image annotation is still far from satisfactory. Active learning approaches provide a possible solution to cope with this problem by selecting most effective samples to ask users to label for training. One of the key research points in active learning is how to select the most effective samples. In this paper, we propose a novel active learning approach based on sparse graph. Comparing with the existing active learning approaches, the proposed method selects the samples based on two criteria: uncertainty and representativeness. The representativeness indicates the contribution of a sample's label propagating to the other samples, while the existing approaches did not take the representativeness into consideration. Extensive experiments show that bringing the representativeness criterion into the sample selection process can significantly improve the active learning effectiveness.
Purpose: This study aimed to introduce active learning methods, including flipped, case-based, and team-based learning in an electrocardiography (ECG) course and to investigate outcomes and satisfaction with these methods. Methods: To identify the learning effect of active learning, pre-and post-academic self-efficacy was compared between the experimental and control groups. In the experimental group, pre-and post-knowledge and clinical performance regarding ECG were also assessed. In addition, class satisfaction was investigated after application of active learning methods in the experimental group. Data were collected from 84 paramedic students and analyzed using SPSS 22.0 (IBM, Armonk, NY, USA). Results: The experimental group showed significant improvement in post-academic self-efficacy and knowledge. The experimental group also showed high clinical performance (9.83 out of 10 in ECG checking ability and 9.63 out of 10 in ECG reading ability). The mean satisfaction score was 4.23 out of 5 (responses based on a Likert scale) in the experimental group. Conclusion: Active learning in an ECG course was found to be highly effective and satisfactory. Furthermore, paramedic students can enhance their accountability and judgement with team-based learning through free engagement in discussion.
In this paper an active random noise control using adaptive learning rate neural networks is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. It is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.
본 연구는 고등 공학교육에 플립러닝을 Active Learning Classroom(ALC)에 적용한 사례와 고정식 강의실에 적용한 사례를 비교하는 것을 목적으로 하였다. 이를 위하여 ALC 플립러닝과 고정식 강의실 플립러닝 사례 간에 사전학습, 학업성취, 수업만족도가 어떻게 다른지 비교하였다. 연구결과, ALC 플립러닝이 고정식 강의실 플립러닝에 비해 사전학습 영상강의 시청을 더 많이 하였고, 중간시험 점수는 낮으나 기말시험 점수는 더 높았다. 또한 수업 요인, 교수자 요인, 전반적 만족도 문항으로 수업만족도를 확인한 결과, ALC 플립러닝이 고정식 강의실 플립러닝에 비해 모든 요인에서 높은 만족도를 보였다. 본 사례연구는 플립러닝 강의실 환경으로서 학습자중심의 수업에 용이하도록 구축한 학습공간인 ALC 환경이 강의실에서 학생 중심의 활발한 상호작용을 필요로 하는 플립러닝에 더 효과적임을 시사한다.
A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.
사람의 얼굴 표정을 실제 환경에서 인식하는 데에는 여러 가지 난이한 점이 존재한다. 그래서 학습에 사용된 데이터베이스와 실험 데이터가 여러 가지 조건이 비슷할 때에만 그 성능이 높게 나온다. 이러한 문제점을 해결하려면 수많은 얼굴 표정 데이터가 필요하다. 본 논문에서는 능동준지도 학습을 통해 다양한 조건의 얼굴 표정 데이터를 쉽게 모으고 보다 빠르게 성능을 확보할 수 있는 방법을 제안한다. 제안하는 알고리즘은 딥러닝 네트워크와 능동 학습 (Active Learning)을 통해 초기 모델을 학습하고, 이후로는 준지도 학습(Semi-Supervised Learning)을 통해 라벨이 없는 추가 데이터를 확보하며, 성능이 확보될 때까지 이러한 과정을 반복한다. 위와 같은 능동준지도 학습(Active Semi-Supervised Learning)을 통해서 보다 적은 노동력으로 다양한 환경에 적합한 데이터를 확보하여 성능을 확보할 수 있다.
Purpose: This study investigates patterns of small group interaction and examines the influence among graduate nursing students of online collaborative learning strategies on small group interaction patterns, task performance and learning attitude in web-based team learning environments. Method: To analyze patterns of small group interaction, group discussion dialogues were reviewed by two instructors. Groups were divided into two categories depending on the type of feedback given (passive or active). For task performance, evaluation of learning processes and numbers of postings were examined. Learning attitude toward group study and coursework were measured via scales. Results: Explorative interactions were still low among graduate nursing students. Among the students given active feedback, considerable individual variability in interaction frequency was revealed and some students did not show any specific type of interaction pattern. Whether given active or passive feedback, groups exhibited no significant differences in terms of task performance and learning attitude. Also, frequent group interaction was significantly related to greater task performance. Conclusion: Active feedback strategies should be modified to improve task performance and learning attitude among graduate nursing students.
Surrogate models aim to approximate the performance function with an active-learning design of experiments (DoE) to obtain a sufficiently accurate prediction of the performance function's sign for an inexpensive computational demand in reliability analysis. Nevertheless, many existing active-learning methods are limited to the Kriging model, while the uncertainties of the Kriging itself affect the reliability analysis results. Moreover, the existing general active-learning methods may not achieve a fully satisfactory balance between accuracy and efficiency. Therefore, a novel active-learning method GLM-CM is constructed to yield the issues, which conciliates several merits of existing methods. To demonstrate the performance of the proposed method, four examples, concerning both mathematical and engineering problems, were selected. By benchmarking obtained results with literature findings, various surrogate models combined with the proposed method not only provide an accurate reliability evaluation while highly alleviating the computational burden, but also provides a satisfactory balance between accuracy and efficiency compared to the other reliability methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.