• Title/Summary/Keyword: Active failure

Search Result 398, Processing Time 0.024 seconds

A Study on the Reliability of Superconducting Fault Current Limiter (초전도한류기의 신뢰도에 관한 연구)

  • Bae, In-Su;Kim, Sung-Yul;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.101-106
    • /
    • 2011
  • The failure of cooling system in Superconducting Fault Current Limiter(SFCL) increases the impedance of superconducting device, and due to malfunction of inner switches the SFCL opens the distribution system inadvertently when required to do so. In this paper, the ground fault and short circuit fault were classified as active failure and the open circuit fault was passive failure. A reliability model of SFCL considers the passive failure as well as active failure, and in the case study the reliability indices of distribution system are evaluated. It is possible that the reliability evaluation excluded passive failure makes the customers reliability seem so worse than it really was. Therefore, the reliability models of SFCL must include the active failure and passive failure together to evaluate the reliability of distribution system connected SFCL.

Determination of active failure surface geometry for cohesionless backfills

  • Altunbas, Adlen;Soltanbeigi, Behzad;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.983-1001
    • /
    • 2017
  • The extent by which economy and safety concerns can be addressed in earth retaining structure design depends on the accuracy of the assumed failure surface. Accordingly, this study attempts to investigate and quantify mechanical backfill properties that control failure surface geometry of cohesionless backfills at the active state for translational mode of wall movements. For this purpose, a small scale 1 g physical model study was conducted. The experimental setup simulated the conditions of a backfill behind a laterally translating vertical retaining wall in plane strain conditions. To monitor the influence of dilative behavior on failure surface geometry, model tests were conducted on backfills with different densities corresponding to different dilation angles. Failure surface geometries were identified using particle image velocimetry (PIV) method. Friction and dilation angles of the backfill are calculated as functions of failure stress state and relative density of the backfill using a well-known empirical equation, making it possible to quantify the influence of dilation angle on failure surface geometry. As a result, an empirical equation is proposed to predict active failure surface geometry for cohesionless backfills based on peak dilatancy angle. It is shown that the failure surface geometries calculated using the proposed equation are in good agreement with the identified failure surfaces.

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base (저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.193-203
    • /
    • 2004
  • Arching effects in backfill materials generate a nonlinear active earth pressure distribution on a rigid retaining wall with rough face, and arching effects on the shape of the nonlinear earth pressure distribution depends on the mode of wall movement. Therefore, the practical shape of failure surface and arching effect in the backfill changed with the mode of wall movement must be considered to calculate accurate magnitude and distribution of active earth pressure on the rigid wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the base is proposed by considering the shape of nonlinear failure surface and arching effects in the backfill. In order to avoid mathematical complexities in the calculation of active earth pressure, the imaginary failure surface composed of four linear surfaces is used instead of the nonlinear failure surface as failure surface of backfills. The comparisons between predictions from the proposed equations and existing model test results show that the proposed equations produce satisfactory predictions.

A Study on Quality Improvement of Medical Equipments (의료기기 QI 활동 개선방안에 대한 연구)

  • Kang, Hun-Hee;Juh, Ra-Hyeong;Kim, Jong-Soon;Kim, Seo-Hwak;Huh, Soo-Jin
    • Quality Improvement in Health Care
    • /
    • v.5 no.2
    • /
    • pp.190-201
    • /
    • 1998
  • Background : Medical equipments take a very important role in diagnosis and treatment of disease in modern medicine and effective maintenance of the equipments is a necessary to provide a good health care to the public. After developing a new QC program for effective maintenance of medical equipments and practicing it for a year, we report the results of the new program. Methods : The maintenance data of 9 equipments in 8 categories including a CT Scanner were analyzed with regard to the parts responsible for most frequent failure and cause of the failure. After learning the most frequent failure part and cause of the failure, we developed a new QC program that emphasizes preventive maintenance of the most frequent failure part. We compared the number of failure per year and active rate of each equipment before and after the adoption of the new QC program. Results : The average number of failure per year per equipment was 20.7 before and it decreased by 43% to 11.9 after adoption of the new QC program. The average active rate of the equipments was 92.6% before and it increased by 3.2% to 95.8% after adoption of the new program. Conclusions : The practice of the new QC program appears very useful as it decreased the failure rate and increased the active rate of the equipments.

  • PDF

Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement

  • Yang, X.L.;Wang, H.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.621-630
    • /
    • 2018
  • In the note a comprehensive and optimal passive-active mode for describing the limit failure of circular shallow tunnel with settlement is put forward to predict the catastrophic stability during the geotechnical construction. Since the surrounding soil mass around tunnel roof is not homogeneous, with tools of variation calculus, several different curve functions which depict several failure shapes in different soil layers are obtained using virtual work formulae. By making reference to the simple-form of Power-law failure criteria based on numerous experiments, a numerical procedure with consideration of combination of upper bound theorem and stochastic medium theory is applied to the optimal analysis of shallow-buried tunnel failure. With help of functional catastrophe theory, this work presented a more accurate and optimal failure profile compared with previous work. Lastly the note discusses different effects of parameters in new yield rule and soil mechanical coefficients on failure mechanisms. The scope of failure block becomes smaller with increase of the parameter A and the range of failure soil mass tends to decrease with decrease of unit weight of the soil and tunnel radius, which verifies the geomechanics and practical case in engineering.

CONFIDENCE LIMITS FOR STEADY STATE AVAILABILITY OF A REDUNDANT SYSTEM

  • Shin, Sang-Wook;Lim, Jae-Hak;Park, Dong-Ho
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.193-200
    • /
    • 2000
  • In this paper, we consider confidence limits for steady state availability of a redundant structure with the function of switchover processing. The system considered in this paper consists of three units which are an active unit, a standby unit and a switchover device. A control module does not affect the performance of the system while the active unit is operating but causes the system failure if the active unit fails at the failure of the control module. The effect of failure of control module is included in our reliability model of the simple redundant structure. The availability of the system is obtained by using the state space method. An example is given to illustrate our results.

  • PDF

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Top (정점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.181-191
    • /
    • 2004
  • For a rigid retaining wall with rough face, the magnitude and distribution of active earth pressure on the wall are affected by the shape of failure surface and arching effect developed in the backfill as well as internal friction angle of the backfill and wall friction angle. Therefore, the practical shape of failure surface and arching effect in the backfill must be considered to acquire accurate magnitude and non-linear distribution of active earth pressure acting on the rigid retaining wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the top is proposed considering the practical shape of non-linear failure surface and arching effects. Accuracy of the proposed equation is checked through comparisons of calculations from the proposed equations with existing model test results. The comparisons show that the proposed equations produce satisfactory results.

An Implementation of Management Function based on RM for Smart Active RFID Reader (스마트 능동형 RFID 리더를 위한 RM 기반 관리 기능 구현)

  • Kwon, Yoon-Geun;Chung, Sang-Hwa;Lee, Yun-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1159-1167
    • /
    • 2011
  • In this paper, we proposed and implemented an EPCglobal Reader Manegement (RM) based management protocol. Using RFID Reader's management function, we could diagnose an active RFID Reader concretely which was impossible with only using Reader protocols and check the problem quickly when the RFID Reader is in failure. When diagnosing RFID Readers using the proposed RM based management protocol, we can check on their failure in stages and specifically, and can estimate range of failure. This helps RFID Reader's fast recovery, reduce loss of failure and improve QoS. We could get reader information with almost same overhead compared with the management message in LLRP. And we could get more information about RFID Reader's operation status.

Failure Zone Estimation from the correlation between the Temperature in Slope and the Soil Nail Strain (지중온도와 변형율과의 상관관계를 통한 활동영역의 추정)

  • Chang, Ki-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.123-130
    • /
    • 2005
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure zone resulted from weathering effect and other factors. The FBG sensor system is used to estimate the correlations between the temperature and the slope in Kimhae, and to find a failure zone in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the correlation. For instance, the zone of high temperature fluctuation can be regarded as one of the possible sliding zone due to the weathering effect while the constant temperature depth of the ground, if exists would not be relatively affected by the weathering process.

  • PDF

FORM-based Structural Reliability Analysis of Dynamical Active Control System (동적능동제어시스템의 FORM기반 구조신뢰성해석)

  • Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.74-80
    • /
    • 2013
  • This study describes structural reliability analysis of actively-controlled structure for which random vibration analysis is incorporated into the first-order reliability method (FORM) framework. The existing approaches perform the reliability analysis based on the RMS response, whereas the proposed study uses the peak response for the reliability analysis. Therefore, the proposed approach provides us a meaningful performance measure of the active control system, i.e., realistic failure probability. In addition, it can deal with the uncertainties in the system parameters as well as the excitations in single-loop reliability analysis, whereas the conventional random vibration analysis requires double-loop reliability analysis; one is for the system parameters and the other is for stochastic excitations. The effectiveness of the proposed approach is demonstrated through a numerical example where the proposed approach shows fast and accurate reliability (or inversely failure probability) assessment results of the dynamical active control system against random seismic excitations in the presence of parametric uncertainties of the dynamical structural system.