• Title/Summary/Keyword: Active exercise load control

Search Result 5, Processing Time 0.025 seconds

Evaluation of the rehabilitation system with active load control by using EMG biofeedback (재활운동을 위한 능동형 근전도 바이오피드백 시스템 평가)

  • Jung, H.D.;Kim, J.Y.;Lee, Y.H.;Mun, C.W.;Mun, C.S.;Choi, H.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • In this study, the active exercise load control system was developed that monitors patient's muscular condition based on EMG signals and controls the load by biofeedback in real-time. In order to select appropriate muscular parameter for the system, the pre-exercise test was performed to obtain EMG signals from healthy 12 males. Subsequently, the main exercise test was performed to evaluate the active exercise load control system based on IEMG: a selected muscular parameter, on healthy 10 males without musculoskeletal disorder. The accuracy and availability of developed system were confirmed through observing changes between exercise load and IEMG. A correlation was analyzed between the fatigue of muscles and RPE indicating the individual subjective fatigue. As a result, the active exercise load control system that was suggested in this study could be useful to control the initial load-balancing and the amount of exercise appropriate for individual in rehabilitation exercise therapy.

  • PDF

Active training machine with muscle activity sensor for elderly people

  • Matsuda, Goichi;Tanaka, Motohiro;Yoon, Sung-Jae;Ishimatsu, Takakazu;Kim, Seok-Hwan;Moromugi, Shunji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1169-1172
    • /
    • 2005
  • For elderly people, an advanced training machine that uses actuator and can adjust load according to muscle activity is proposed. The proposed machine allows users to have a safe and effective training through exercise close to ordinal motion appears in daily life such as stretching or stooping motion. A muscle activity sensor real-timely monitors the activation level of user's muscle during the exercise and the training load is adjusted based on the measured data. The training load is exerted and continuously controlled by electric/pneumatic actuator.

  • PDF

Training machine for active rehabilitation/training of elderly people

  • Moromugi, Shunji;Koujitani, Tsutomu;Kim, Seok-Hwan;Matsuzaka, Nobuou;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1648-1652
    • /
    • 2004
  • An advanced training machine designed for elderly people is proposed. The training machine allows users to have a safe and effective training through exercise close to ordinal motion appears in daily life such as standing up/down motion. The activation level of user's muscle is real timely monitored during the exercise and the training load is adjusted based on the body information. The training load is exerted and continuously controlled by actuation of an air cylinder.

  • PDF

The Comparison Study of Ankle Joint Mobilization and Elongation on the Difference of Weight-bearing Load, Low Back Pain and Flexibility in Flat-foots Subjects (편평족에 대한 관절가동술과 자가신장이 요부의 신장성, 요통과 하지 체중부하 차이에 대한 비교 연구)

  • Park, Sung-doo;Yu, Dal-yeong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Background: The purpose of this study was to investigate the relationship between the spine and the flat-foot, the stability and the alignment of the posture of the neck to prevent the alignment of the ankle joint operation and the lower back flexibility of the lumbar region according to the type of treatment using active stretching of the triceps, back pain, and to see how they affect weight bearing differences. Methods: The subjects of this study were 24 chronic low back pain patients. They were randomly divided into experimental group and control group. In the experimental group, ankle joint mobilization and active scraping of triceps were performed three times a week for a total of 6 weeks. The control group was performed in the same way without articulation. The range of flexion and extension motion of the lumbar spine and pain degree and difference of weight-bearing were measured before and after the experiment. Results: The model of ankle joint mobilization and calf muscle elongation of flat foot significantly improved the range of flexion and extension motion of the vertebrae (p<.05) and the VAS and distribution of weight-bearing were decreased in both of two groups (p<.05). In other words, the exercise and mobilization help to recover of the balance of the whole musculoskeletal, the vertebrae. Conclusions: The active exercise of the triceps muscle of the lower leg in this study It affects the flexibility of the lumbar spine, the pain and the difference in the weight support of the lower extremities, when we performed ankle joint mobilization for exercise and cramping, pain and the difference in weight support between the two lower limbs.

  • PDF

Effects of Three Different Hip Positions in Frontal Plane on Activity of Abdominal Muscles During Active Straight-Leg Raise

  • Yoon, Tae-Lim;Kim, Ki-Song
    • Physical Therapy Korea
    • /
    • v.20 no.3
    • /
    • pp.81-88
    • /
    • 2013
  • Active straight-leg raise (ASLR) is a physical evaluation procedure to test lumbar spine stability. Several previous studies have reported various methods to control the activation of abdominal muscles during ASLR. We investigated the effects of three different hip positions in frontal plane on abdominal muscles to increase or decrease the difficulty level of lumbar spine stability exercise during ASLR in pain free subjects. Eleven young and healthy subjects voluntarily participated in this study (6 men, 5 women; mean age=$24.0{\pm}1.2$ years, height=$160.0{\pm}7.3cm$, weight=$55.0{\pm}10.6kg$, body mass index=$21.5{\pm}2.3kg/m^2$). The subjects had three trials on each ASLR with hip $10^{\circ}$ adduction, neutral hip, and hip $30^{\circ}$ abduction. Separate repeated-measures analysis of variance (ANOVA) and the post hoc Bonferroni tests (with ${\alpha}$=.05/3=.017) were performed for each muscle among the three different hip positions in frontal plane (ASLR with hip $10^{\circ}$ adduction, neutral hip, and hip $30^{\circ}$ abduction). The ipsilateral external oblique (EO), contralateral EO, ipsilateral internal oblique/transverse abdominis (IO/TrA), and contralateral IO/TrA were significantly greater in ASLR with hip $30^{\circ}$ abduction compared with ASLR with hip $10^{\circ}$ adduction. Also, the ipsilateral EO, contralateral EO, and ipsilateral IO/TrA were significantly greater in ASLR with hip $30^{\circ}$ abduction compared with ASLR with neutral hip. These results suggest that ASLR with hip $30^{\circ}$ abduction and neutral would be useful method to strengthen the EO and IO/TrA. And, ASLR with hip $10^{\circ}$ adduction would be effective in early stages of lumbar stabilization program due to low activation of EO and IO/TrA during maintaining of ASLR position with low load.