• Title/Summary/Keyword: Active excitation

Search Result 227, Processing Time 0.029 seconds

Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation

  • Gao, W.;Chen, J.J.;Hu, T.B.;Kessissoglou, N.J.;Randall, R.B.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.137-150
    • /
    • 2004
  • The optimization of active bars' placement and feedback gains of closed loop control system for random intelligent truss structures under non-stationary random excitation is presented. Firstly, the optimal mathematical model with the reliability constraints on the mean square value of structural dynamic displacement and stress response are built based on the maximization of dissipation energy due to control action. In which not only the randomness of the physics parameters of structural materials, geometric dimensions and structural damping are considered simultaneously, but also the applied force are considered as non-stationary random excitation. Then, the numerical characteristics of the stationary random responses of random intelligent structure are developed. Finally, the rationality and validity of the presented model are demonstrated by an engineering example and some useful conclusions are obtained.

Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation

  • Malgaca, L.;Karagulle, H.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.55-68
    • /
    • 2009
  • In the present study, active control of a smart beam under forced vibration is analyzed. The aluminum smart beam is composed of two piezoelectric patches and strain gauge. One of the piezoelectric patches is used as controlling actuator while the other piezoelectric patch is used as vibration generating shaker. The smart beam is harmonically excited by the piezoelectric shaker at its fundamental frequency. The strain gauge is utilized to sense the vibration level. Active vibration reduction under harmonic excitation is achieved using both strain and displacement feedback control. Control actions, the finite element (FE) modeling and analyses are directly carried out by using ANSYS parametric design language (APDL). Experimental applications are performed with LabVIEW. Dynamic behavior at the tip of the beam is evaluated for the uncontrolled and controlled responses. The simulation and experimental results are compared. Good agreement is observed between simulation and experimental results under harmonic excitation.

Excitation System for Simulating Wind-induced Responses of a Building Structure using an Active Tuned Mass Damper (ATMD를 이용한 건축 구조물의 풍응답 구현을 위한 가진시스템)

  • Park, Eun-Churn;Lee, Sang-Hyun;Min, Kyung-Won;Kang, Kyung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.210-215
    • /
    • 2007
  • In this paper, excitation systems using an active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

  • PDF

Possibility of Electro-Active Papers (EAPap) Actuators (Electro-Active Papers(EAPap) 작동기의 가능성 연구)

  • 김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.495-498
    • /
    • 2002
  • Recently, the advent of electro-active papers (EAPap) actuators has been reported. In this paper, the possibility of the actuators is demonstrated. EAPap is a paper that produces large displacement with small force under an electrical excitation. EAPap is made with a chemically treated paper by constructing thin electrodes on both sides of the paper. When electrical voltage is applied on the electrodes the EAPap produces bending displacement. To improve the bending performance of EAPap, different paper fibers-softwood, hardwood, bacteria cellulose, cellophane, carbon mixture paper, electrolyte containing paper and Korean traditional paper, in conjunction with additive chemicals were tested. Two attempts were made to construct the electrodes: the direct use of aluminum foil and the gold sputtering technique. It was found that a cellophane paper exhibits a remarkable bending performance. When 2MV/m of excitation voltage was applied on the paper actuator, more than 3mm of tip displacement was observed out of the 30 mm long paper beam. This is quite low excitation voltage compared to that of other EAPs. The actuation principle of electro-active paper (EAPap) and possible applications are addressed.

  • PDF

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

Optimal Switching Parameter Control of Semi-Active Engine Mount

  • Truong, Thanh Quoc;Ahn, Young-Kong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1-4
    • /
    • 2005
  • This paper describes work on isolation of vibration related engine by a hydraulic engine mount with controllable area of inertia track. Automotive engine mounts are required to constrain motion of engine shake resulting from low-frequency road input of shock excitation and also to isolate noise and vibration generated by the engine with unbalanced disturbance at the high frequency range. The property of the mount depends on vibration amplitude and excitation frequency, which means that the excitation amplitude is large in low excitation frequency range and small in high frequency range. In this paper, theoretical works with model of the mount to reduce vibrations related engine were conducted. The volumetric stiffness of the mount is greatly changed according to the switching the area of the inertia track. Therefore, when the area of the inertia track is tuned, the transmissibility of the mount is effectively reduced.

  • PDF

Semi-active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation

  • Braz-Cesar, Manuel T.;Barros, Rui C.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.389-395
    • /
    • 2018
  • This paper presents the application of a semi-active fuzzy based control system for seismic response reduction of a single degree-of-freedom (SDOF) framed structure using a Magnetorheological (MR) damper. Semi-active vibration control with MR dampers has been shown to be a viable approach to protect building structures from earthquake excitation. Moreover, intelligent damping systems based on soft-computing techniques such as fuzzy logic models have the inherent robustness to deal with typical uncertainties and non-linearities present in civil engineering structures. Thus, the proposed semi-active control system uses fuzzy logic based models to simulate the behavior of MR damper and also to develop the control algorithm that computes the required control signal to command the actuator. The results of the numerical simulations show the effectiveness of the suggested semi-active control system in reducing the response of the SDOF structure.

Sliding Mode Control for Pneumatic Active Suspension Systems of a One-wheel Car Model

  • Yoshimura, Toshio;Kimura, Ryota
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1152-1157
    • /
    • 2005
  • This paper is concerned with the construction of an improved sliding mode control for the active suspension system of a one-wheel car model subject to the excitation from a road profile. The active control is composed of the equivalent and the switching controls where an improved sliding surface is proposed. The active control force is generated by operating a pneumatic actuator due to the control signal that constructed by measuring the state variables of the car model and by estimating the excitation from the road profile using the VSS observer. The experimental result indicates that the proposed active suspension system is relatively effective in the vibration suppression of the car model.

  • PDF

Experimental Study on the Active Control of Building Using Sliding Mode Control Method (슬라이딩 모드제어 기법을 적용한 건물의 능동제어 실험)

  • 김성춘;박정근;민경원;정진욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.431-435
    • /
    • 2001
  • The active structural control has emerged as structural safety of structures against natural loadings such as earthquake and wind loadings. Of many control algorithms, Sliding-Mode Control (SMC) can design both linear controller and nonlinear controller. The robustness against parameter variations as well as excitation uncertainties that is imparted to the SMC due to its nonlinear control action, could make SMC an attractive control algorithm when dealing with structures where the external excitation constitutes the main uncertainty in the system. This paper demonstrates experimentally the efficacy of the SMC algorithm based on the active mass driver system in reducing the response of seismically excited buildings. The SMC control strategy is verified with the experimental study on the one-story building model equipped with the active mass driver.

  • PDF