• Title/Summary/Keyword: Active contour method

Search Result 121, Processing Time 0.036 seconds

Detection of Pulmonary Region in Medical Images through Improved Active Control Model

  • Kwon Yong-Jun;Won Chul-Ho;Kim Dong-Hun;Kim Pil-Un;Park Il-Yong;Park Hee-Jun;Lee Jyung-Hyun;Kim Myoung-Nam;Cho Jin-HO
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.357-363
    • /
    • 2005
  • Active contour models have been extensively used to segment, match, and track objects of interest in computer vision and image processing applications, particularly to locate object boundaries. With conventional methods an object boundary can be extracted by controlling the internal energy and external energy based on energy minimization. However, this still leaves a number of problems, such as initialization and poor convergence in concave regions. In particular, a contour is unable to enter a concave region based on the stretching and bending characteristic of the internal energy. Therefore, this study proposes a method that controls the internal energy by moving the local perpendicular bisector point of each control point on the contour, and determines the object boundary by minimizing the energy relative to the external energy. Convergence at a concave region can then be effectively implemented as regards the feature of interest using the internal energy, plus several objects can be detected using a multi-detection method based on the initial contour. The proposed method is compared with other conventional methods through objective validation and subjective consideration. As a result, it is anticipated that the proposed method can be efficiently applied to the detection of the pulmonary parenchyma region in medical images.

A Study on Applying the Adaptive Window to Detect Objects Contour (물체의 윤곽선 검출을 위한 Adaptive Window적용에 관한 연구)

  • 양환석;서요한;강창원;박찬란;이웅기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.2
    • /
    • pp.57-67
    • /
    • 1998
  • In order to extract the contour of interesting object in the image, Kass suggested the Active Contour Model called "Snakes" The speed of this model is slow and this model is sensitive of initialization. In order to improve these problems, Gunn extracted the accurate contour by using two initializations, and operated to less sensitive of initialization. This method could extract more accurate contour than the existing method, but it had no effect in the speed and it was sensitive of noise. This paper applied to the Energy Minimization Algorithm about only the pixel within the window applying the window of $8{\times}8$ size at each contour point consisting Snakes in order to solve these problems. In order to less sensitive of noise which exists within image, it suggests a method that moves the window to vertical direction for the gradient of each contour point.our point.

  • PDF

Segmentation of Brain Ventricle Using Geodesic Active Contour Model Based on Region Mean (영역평균 기반의 지오데식 동적 윤곽선 모델에 의한 뇌실 분할)

  • Won Chul-Ho;Kim Dong-Hun;Lee Jung-Hyun;Woo Sang-Hyo;Cho Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1150-1159
    • /
    • 2006
  • This paper proposed a curve progress control function of the area base instead of the existing edge indication function, in order to detect the brain ventricle area by utilizing a geodesic active contour model. The proposed curve progress control function is very effective in detecting the brain ventricle area and this function is based on the average brightness of the brain ventricle area which appears brighter in MRI images. Compared numerically by using various measures, the proposed method in this paper can detect brain ventricle areas better than the existing method. By examining images of normal and diseased brain's images by brain tumor, we compared the several brain ventricle detection algorithms with proposed method visually and verified the effectiveness of the proposed method.

  • PDF

Object Contour Tracking Using an Improved Snake Algorithm (개선된 스네이크 알고리즘을 이용한 객체 윤곽 추적)

  • Kim, Jin-Yul;Jeong, Jae-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.105-114
    • /
    • 2011
  • The snake algorithm is widely adopted to track objects by extracting the active contour of the object from background. However, it fails to track the target converging to the background if there exists background whose gradient is greater than that of the pixels on the contour. Also, the contour may shrink when the target moves fast and the snake algorithm misses the boundary of the object in its searching window. To alleviate these problems, we propose an improved algorithm that can track object contour more robustly. Firstly, we propose two external energy functions, the edge energy and the contrast energy. One is designed to give more weight to the gradient on the boundary and the other to reflect the contrast difference between the object and background. Secondly, by computing the motion vector of the contour from the difference of the two consecutive frames, we can move the snake pointers of the previous frame near the region where the object boundary is probable at the current frame. Computer experiments show that the proposed method is more robust to the complicated background than the previously known methods and can track the object with fast movement.

The preprocessing effect using K-means clustering and merging algorithms in cardiac left ventricle segmentation

  • Cho, Ik-Hwan;Do, Ki-Bum;Oh, Jung-Su;Song, In-Chan;Chang, Kee-Hyun;Jeong, Dong-Seok
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.126-126
    • /
    • 2002
  • Purpose: For quantitative analysis of the cardiac diseases, it is necessary to segment the left-ventricle(LV) in MR cardiac images. Snake or active contour model has been used to segment LV boundary. In using these models, however, the contour of the LV may not converge to the desirable one because the contour may fall into local minimum value due to image artifact in inner region of the LV Therefore, in this paper, we propose the new preprocessing method using K-means clustering and merging algorithms that can improve the performance of the active contour model.

  • PDF

Image Segmentation of Special Area Using the Level Set (레벨셋을 이용한 특정 영역의 영상 세그먼테이션)

  • Joo, Ki-See;Choi, Deog-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.967-975
    • /
    • 2010
  • Image segmentation is one of the first steps leading to image analysis and interpretation, which is to distinguish objects from background. However, the active contour model can't exactly extract the desired objects because the phase only is 2. In this paper, we propose the method which can find the desired contours by composing the initial curve near the objects which have intensities of special range. The initial curve is calculated by the histogram equalization, the Gaussian equalization, and the threshold. The proposed method reduce the calculation speed and exactly detect the wanted objects because the initial curve set near by interested area. The proposed method also shows more efficient than the active contour model in the results applied the CT and MR images.

Preprocessing Effect by Using k-means Clustering and Merging .Algorithms in MR Cardiac Left Ventricle Segmentation (자기공명 심장 영상의 좌심실 경계추출에서의 k 평균 군집화와 병합 알고리즘의 사용으로 인한 전처리 효과)

  • Ik-Hwan Cho;Jung-Su Oh;Kyong-Sik Om;In-Chan Song;Kee-Hyun Chang;Dong-Seok Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • For quantitative analysis of the cardiac diseases. it is necessary to segment the left-ventricle (LY) in MR (Magnetic Resonance) cardiac images. Snake or active contour model has been used to segment LV boundary. However, the contour of the LV front these models may not converge to the desirable one because the contour may fall into local minimum value due to image artifact inside of the LY Therefore, in this paper, we Propose the Preprocessing method using k-means clustering and merging algorithms that can improve the performance of the active contour model. We verified that our proposed algorithm overcomes local minimum convergence problem by experiment results.

A Boundary Extraction Method Based on Active Contour Model and Dynamic Programming (능동 윤곽선 모델을 이용한 경계선 추출과 다이나믹 프로그래밍)

  • 김령주;김영철;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.282-285
    • /
    • 2002
  • 의료영상에서 윤곽선의 추출은 관심영역 대한 객관적인 수치 즉 면적, 부피, 장단축의 길이 등을 분석하고 3차원 재구성을 위해 선행되어야 하는 중요한 과정이다. 현재 윤곽선 추출에 대한 않은 방법들이 개발 중에 있으나 이 방법들은 한계를 지니고 있어 더 높은 수준의 처리가 요구된다. 본 논문에서는 active contour model(snake)을 이용하여 MR뇌 영상에서 종양을 추출하였다. Snake의 에너지 최적화 문제를 dynamic programming을 사용하여 개선하였으며 canny edge detection을 이용하여 잡음에 덜 민감하도록 하였다.

  • PDF

Mono-Vision Based Satellite Relative Navigation Using Active Contour Method (능동 윤곽 기법을 적용한 단일 영상 기반 인공위성 상대항법)

  • Kim, Sang-Hyeon;Choi, Han-Lim;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.902-909
    • /
    • 2015
  • In this paper, monovision based relative navigation for a satellite proximity operation is studied. The chaser satellite only uses one camera sensor to observe the target satellite and conducts image tracking to obtain the target pose information. However, by using only mono-vision, it is hard to get the depth information which is related to the relative distance to the target. In order to resolve the well-known difficulty in computing the depth information with the use of a single camera, the active contour method is adopted for the image tracking process. The active contour method provides the size of target image, which can be utilized to indirectly calculate the relative distance between the chaser and the target. 3D virtual reality is used in order to model the space environment where two satellites make relative motion and produce the virtual camera images. The unscented Kalman filter is used for the chaser satellite to estimate the relative position of the target in the process of glideslope approaching. Closed-loop simulations are conducted to analyze the performance of the relative navigation with the active contour method.

Lip Contour Extraction Using Active Shape Model Based on Energy Minimization (에너지 최소화 기반 능동형태 모델을 이용한 입술 윤곽선 추출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1891-1896
    • /
    • 2006
  • In this paper, we propose an improved Active Shape Model for extracting lip contour. Lip deformation is modeled by a statistically deformable model based Active Shape Model. Because each point is moved independently using local profile information in Active Shape Model, many error may happen. To use a global information, we define an energy function similar to an energy function in Active Contour Model, and points are moved to positions at which the total energy is minimized. The experiments have been performed for many lip images of Tulip 1 database, and show that our method extracts lip shape than a traditional ASM more exactly.