• Title/Summary/Keyword: Active catalyst

검색결과 476건 처리시간 0.021초

Influence of the cathode catalyst layer thickness on the behaviour of an air breathing PEM fuel cell

  • Ferreira-Aparicio, Paloma;Chaparro, Antonio M.
    • Advances in Energy Research
    • /
    • 제2권2호
    • /
    • pp.73-84
    • /
    • 2014
  • Fuel cells of proton exchange membrane type (PEMFC) working with hydrogen in the anode and ambient air in the cathode ('air breathing') have been prepared and characterized. The cells have been studied with variable thickness of the cathode catalyst layer ($L_{CL}$), maintaining constant the platinum and ionomer loads. Polarization curves and electrochemical active area measurements have been carried out. The polarization curves are analyzed in terms of a model for a flooded passive air breathing cathode. The analysis shows that $L_{CL}$ affects to electrochemical kinetics and mass transport processes inside the electrode, as reflected by two parameters of the polarization curves: the Tafel slope and the internal resistance. The observed decrease in Tafel slope with decreasing $L_{CL}$ shows improvements in the oxygen reduction kinetics which we attribute to changes in the catalyst layer structure. A decrease in the internal resistance with $L_{CL}$ is attributed to lower protonic resistance of thinner catalyst layers, although the observed decrease is lower than expected probably because the electronic conduction starts to be hindered by more hydrophilic character and thicker ionomer film.

Styrene Epoxidation over Cobalt Cyclam Immobilized SBA-15 Catalyst

  • Sujandi;Prasetyanto, Eko Adi;Han, Sang-Cheol;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1381-1385
    • /
    • 2006
  • Cobalt (cyclam) complex has been successfully immobilized onto SBA-15, and proven to be an active catalyst for the epoxidation of styrene with tert-butyl hydroperoxide as a terminal oxidant. The selectivity for styrene oxide was observed to be up to 66% with 40% styrene conversion after 12h reaction time. The reversible redox cycle between Co(III) and Co(II) couple which was supposed to play key role during the epoxidation reaction was supported by a cyclic voltametry analysis. The textural properties of the catalyst was characterized by XRD, N2 adsorption-desorption, and TEM analysis.

Bench-scale Experiment on Catalytic Decomposition of 1,2 Dichlorobenzene by Vanadia-Titania Catalyst

  • Jeong, Ju-Young;Chin, Sung-Min;Jurng, Jong-Soo
    • 한국환경과학회지
    • /
    • 제18권7호
    • /
    • pp.709-714
    • /
    • 2009
  • Catalytic activities of $V_2O_5/TiO_2$ catalyst were investigated under reaction conditions such as reaction temperature, catalyst size, inlet concentration and space velocity. A 1,2-dichlorobenzene(1,2-DCB) concentrations were measured in front and after of the heated $V_2O_5/TiO_2$ catalyst bed, and conversion efficiency of 1,2-DCB was determined from it's concentration difference. The conversion of 1,2-DCB using a pellet type catalyst in the bench-scale reactor was lower than that with the powder type used in the micro flow-scale reactor. However, when the pellet size was halved, the conversion was similar to that with the powder type catalyst. The highest conversion was shown with an inlet concentration of 100 ppmv, but when the concentration was higher or lower than 100 ppmv, the conversion was found to decrease. Complete conversion was obtained when the GHSV was maintained at below 10,000 $h^{-1}$, even at the relatively low temperature of $250^{\circ}C$. Water vapor inhibited the conversion of 1,2-DCB, which was suspected to be due to the competitive adsorption between the reactant and water for active sites.

Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성 (Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst)

  • 박영수;김우현;길상인;윤진한;민태진;노선아
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

Synthesis, Characterization and Application of Poly(4-Methyl Vinylpyridinium Hydroxide)/SBA-15 Composite as a Highly Active Heterogeneous Basic Catalyst for the Knoevenagel Reaction

  • Kalbasi, Roozbeh Javad;Kolahdoozan, Majid;Massah, Ahmadreza;Shahabian, Keinaz
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2618-2626
    • /
    • 2010
  • In this paper poly (4-methyl vinylpyridinium hydroxide)/SBA-15 composite was prepared as a highly efficient heterogeneous basic catalyst by in situ polymerization method for the first time. It was characterized by XRD, FT-IR, BET, TGA, SEM and back titration using NaOH. This catalyst exhibited the excellent catalytic activities for the Knoevenagel condensation of various aldehydes with ethyl cyanoacetate. Over this catalyst, ${\alpha},{\beta}$-unsaturated carbonyl compounds were obtained in the reasonable yield at $95^{\circ}C$ in 10 - 30 min in $H_2O$ as a solvent with a 100% selectivity to the condensation products. Catalyst could be easily recycled after the reaction and it could be reused without the significant loss of activity/selectivity performance. No by-product formation, high yields, short reaction times, mild reaction conditions and operational simplicity with reusability of the catalyst were the salient features of the present synthetic protocol. Presence of $H_2O$ as a solvent was also recognized as a "green method".

KF/MgO 촉매를 이용한 대두유의 전이에스테르화 반응 (Transesterification Reaction of Soybean Oil over KF/MgO Catalyst)

  • 조용범;전종기;박성훈;박영권
    • 공업화학
    • /
    • 제23권3호
    • /
    • pp.344-347
    • /
    • 2012
  • 본 연구에서는 기존 MgO의 염기세기를 증가시켜 전이에스테르화 반응에 있어 보다 좋은 활성을 가지는 촉매를 만들고자 하였다. MgO를 실험실에서 제조한 후 지지체로 사용하였으며 염기세기를 증가시키기 위하여 KF를 함침법으로 담지하였다. BET, XRD, XRF, $CO_2$ TPO로 촉매의 특성분석을 하였고, 대두유과 메탄올을 사용하여 바이오디젤을 합성한 후 지방산메틸에스테르 함유량을 측정함으로써 촉매의 활성을 알아보았다. 결과적으로, KF를 30% 담지한 촉매가 활성이 가장 좋은 것으로 나타났다. 이는 전이에스테르화 반응에서 중간세기 염기도가 더 많이 관여하기 때문으로 보인다.

$Cd^{2+}, H^+$ 및 OH-이온이 EDTA를 포함한 Co (Ⅲ) 착물의 킬레이트고리 변화에 미치는 영향 (The Influence for the Change of Chelate Ring of Co (Ⅲ) Complexes Containing EDTA by $Cd^{2+}, H^+, and OH^-$)

  • 김동엽;이동진;오창언;도명기
    • 대한화학회지
    • /
    • 제34권2호
    • /
    • pp.165-170
    • /
    • 1990
  • 광학활성인 $[Co(edta)]^- 착물과 [Co(Hedta)Cl]^- 착물의 반응성과 구조적인 변화를 여러 가지 촉매(H^+, OH^-, 그리고 Cd^{2+})의 존재하에서 연구하였다. Δ-[Co(edta)]- 착물에 촉매로서 H+ 또는 OH-를 각각 작용시키면 착물에 대한 리간드의 G-ring이 열리면서, 광학활성인 [Co(Hedta)OH_2]착물과 라세미-[Co(edta)OH]^{2-} 착물이 생성된다. (-)546-[Co(Hedta)Cl]- 착물에 촉매로서 Cd^{2+}$를 작용시키면, 고리닫힘이 일어나 Δ-[Co(edta)]-착물이 생성되어지고, 이 때 절대배치는 유지되어진다.

  • PDF

경유 중 황이 산화촉매 장착 디젤엔진의 입자상 물질에 미치는 영향 (The Effect of Fuel Sulfer on Particulate Matter of Diesel Engine Equipped with Oxidation Catalyst)

  • 조강래;신영조;류정호;김희강
    • 한국대기환경학회지
    • /
    • 제13권6호
    • /
    • pp.487-495
    • /
    • 1997
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidizing CO, HC and SOF effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing SOF and also to have high activity for the oxidation of sulfur dioxide $(SO_2)$ to sulfur trioxide $(SO_3)$. There is a need to develop a highly selective catalyst which can promote the oxidation SOF efficiently, on the other hand, suppress the oxidation of $SO_2$. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated ceramic monolith substrate. A prepared Pt-V catalytic converter was installed on a heavy duty diesel engine and the effect of fuel sulfur on particulate matter (PM) of heavy duty diesel engine was measured. The effect of fuel sulfur on PM of Pt-V was also compared with that of a commercialized Pt catalyst currently being used in some of the heavy duty diesel engines in advanced countries. Only 1 $\sim$ 3% of sulfur in the diesel fuel was converted to sulfate in PM for the engine without catalyst, but almost 100% of sulfur conversion was achieved for the engine with Pt catalyst at maximum loading condition. In the case of Pt-V catalyst, there was no big difference in conversion with the base engine even at maximum loading condition. The reason of SOF increase according to the increase of suflate emission was identified as the washing off effect of bound water in sulfate.

  • PDF

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

코로나/촉매 일체형 시스템의 탈질특성에 관한 연구 (A Study on DeNOx Characteristics of Corona/Catalyst Hybrid System)

  • 장홍기;최창식;신중욱;지영연;홍민선;정윤진
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.699-707
    • /
    • 2007
  • This study was carried out to investigate the reaction characteristics of corona/catalyst hybrid $DeNO_x$ process. The experiments were performed by using the multi-staged pin-to-hole type corona reactor which is enable to control the pin-to-hole gap and to insert the catalyst. Also, used for this study, were catalysts which commercially used Pt, Pd and $TiO_2$, and oxygen and hydrocarbon ($C_2H_4$) as reagents. In the syn-gas test, at high temperatures in the range of $100{\sim}200^{\circ}C$, the corona-only $DeNO_x$ process did not reduce the $NO_x$ concentration effectively. However in the presence of ethylene and oxygen as reagents, the $NO_x$ removal efficiency was better at these high temperatures than corona-only $DeNO_x$ process. In addition, coronal catalyst hybrid process with $TiO_2$ showed more efficiency of $NO_x$ removal than Pt and Pd catalyst, because the $TiO_2$ catalyst was more active than Pt and Pd catalyst to converse the $NO_2$ to $HNO_3$. Furthermore, at the condition of real diesel exhaust gas, the $DeNO_x$ efficiency of corona/catalyst hybrid process was not good at higher reaction temperature and plasma density.