• Title/Summary/Keyword: Active Vibration Isolation System

Search Result 69, Processing Time 0.046 seconds

A Study on Active Vibration Isolation Using Electro-Magnetic Actuator (전자기력을 이용한 능동제진에 관한 연구)

  • 손태규;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1169-1181
    • /
    • 1994
  • Vibration isolation of mechanical systems, in general, is achieved through passive or active vibration isolators. Passive vibration isolator has an inherenrt performance limitation. Whereas, active vibration isolator provides significantly superior vibration-isolation performance at the cost of energy sources and sensors. Recently, in many cases, such as suspension system, precision machinery ... etc, active isolation system outweighs its limitation. Therefore, many studies, researches, and applications are carried out in this field. In this study, vibration-isolation characteristics of an active vibration control system using electromagnetic force actuator are investigated. Several control algorithms including optimal, feedforward are used for active vibration isolation. From the experimental results of each algorithm, effective control algorithms for this active vibration-isolation system are proposed.

전자기력을 이용한 능동제진

  • 손규태;유원희;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.179-183
    • /
    • 2001
  • Vibration isolation of mechanical systems, in general is achieved through either passive or active vibration control system. Although passive vibration isolators offer simple and reliable means to protect mechanical system from vibration environment, passive vibration isolator has inherent performance limitation. Whereas, active vibration isolator provide significantly superior vibration-isolation performance. Recently, many studied and applications are carried out in this field. In this study, vibration-isolation characteristics of active vibration control system using electromagnetic force actuator are investigated. Some control algorithms. Optimal Feedforward are used for active vibration isolation. Form the experimental results of each control algorithms, active vibration isolation characteristics are investigated.

Modeling and Control of a Four Mount Active Micro-vibration Isolation System

  • Banik, Rahul;Gweon, Dae-Gab
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.41-45
    • /
    • 2006
  • Micro vibration isolation, typically originated from ground, is always a prime concern for the nano-measurement instruments such as Atomic Force Microscopes. A four mount active vibration isolation system is proposed in this paper. Modeling and control of such a four mount system was analyzed. Combined active-passive isolation principle is used for vibration isolation by mounting the instrument on a passively damped isolation system made of Elastomer along with the active stage in parallel that consists of very soft actuation system, the Voice Coil Motor. The active stage works in combination with the passive stage for working as a very low frequency vibration attenuator.

  • PDF

Modeling and Control of a Four Mount Active Micro-vibration Isolation System

  • Banik, Rahul;Gweon, Dae-Gab;Hong, Dong-Pyo
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.150-153
    • /
    • 2006
  • Micro vibration isolation, typically originated from ground, is always a prime concern for the nano-measurement instruments such as Atomic Force Microscopes. A four mount active vibration isolation system is proposed in this paper. Modeling and control of such a four mount system as analyzed. Combined active-passive isolation principle is used for vibration isolation by mounting the instrument on a passively damped isolation system made of Elastomer along with the active stage in parallel that consists of very soft actuation system, the Voice Coil Motor. The active stage works in combination with the passive stage for working as a very low frequency vibration attenuator.

  • PDF

Design and Analysis of an Active Vibration Isolation System (능동형 제진 시스템의 설계 및 해석)

  • Moon, Jun-Hee;Pahk, Heui-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.647-650
    • /
    • 2004
  • The modeling of an active vibration isolation system is accomplished by using the equivalent spring constant, mass and rotational Inertia of each component. The detailed model of the actuation module is successful for describing its frequency-domain performance but also too complicated to implement it to actual system for control so that the order of the model is reduced up to the degree that preserves its characteristic in the low frequency range. The reduced model is suitable for identifying the unknown system parameters such as damping constants of components. The overall isolation system is described by using the reduced model of the actuation module. The accurate model ing and system parameter identification that is essential for the control of the active vibration isolation system is attained successfully.

  • PDF

Development of the Vibration Isolation System using Piezoceramic Sensors and Actuators (압전세라믹 감지기와 작동기를 이용한 방진 시스템 개발)

  • Seok Heo;Moon K. Kwak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.309.2-309
    • /
    • 2002
  • This paper is concerned with the development of the vibration isolation system using piezoelectric actuators and sensors. The active vibration absorber system consists of 4 pairs of PZT actuators bonded on aluminum plates making s- shaped device. Hence, the active system is directly connected to the passive system. The rubber attached to the end of the beam is connected to the upper base as a structural member. It allows bending thus maximizing the vertical movement generated by the piezoceramic actuators. (omitted)

  • PDF

Active Control of Vibration Isolation Table Using Air-spring (공기스프링을 이용한 방진테이블의 능동 제어)

  • An, Chae-Hun;Yim, Kwang-Hyeok;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.565-571
    • /
    • 2007
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

Active Control of Vibration Isolation Table Using Air-spring (공기스프링을 이용한 방진 테이블의 능동 제어)

  • An, Chae-Hun;Yim, Kwang-Hyeok;Kwon, Hyeok-Jin;Jung, Jin-Hoon;Bae, Yoon-Hwa;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.831-836
    • /
    • 2006
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

  • PDF

A Study on the Manufacturing and Dynamic Charateristics of Vibration Absorber Using Piezoceramics and Isolation Pad (압전세라믹과 방진고무를 이용한 진동흡수장치의 제작과 동적특성 연구)

  • Heo, Seok;Kwak, Moon-k
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.477-482
    • /
    • 2002
  • This research is concerned with the study of an active vibration absorber using piezoelectric actuators and Isolation pad. The active isolation system consists of 4-pairs of PZT actuators bonded on the surface of an aluminum plate and a passive damping material. The active system is connected to the passive system in series. The Signals of the accelerometers are fed into the PZT actuator through the controller. We proposed a new control technique which can deal with the shock as well as the base excitation in this study. The Positive Acceleration Feedback(PAE) tuned to the natural frequency of the vibration isolation system is used to suppress the vibrations caused by the shock using the top accelerometer signal. The Negative Acceleration Feedback (NAF) based on the base acceleration signal is used to counteract the base motion. Experimental results show that the proposed active vibration isolation system can suppress vibrations.

  • PDF

Development of the Active Vibration Absorber Using Piezoelectric Actuators (압전세라믹을 이용한 능동진동제어장치의 개발)

  • Kwak, Myung-Hoon;Heo, Seok;Kwak, Moon-K
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.476-481
    • /
    • 2001
  • This research is concerned with development of the active vibration absorber using piezoelectric actuators. This active isolation system consists of a-pairs of PZT actuators bonded on a S-shaped aluminum plate and the passive damping material. The active system is connected to the passive system in series. In this paper, one of the popular control techniques which have been successfully applied to the smart structure is the Positive Position Feedback(PPF) control. The digital PPF control lows downloaded to the DSP chip and a main program, which runs SISO PPF algorithm. The structure and dynamic characteristics of the proposed active vibration isolation system and described in detail. To demonstate the effectiveness of the active vibration control, the PPF controller is first employed. Experimental results show that the active vibration isolation is possible by means of the proposed system.

  • PDF