• 제목/요약/키워드: Active Vibration Control System

검색결과 593건 처리시간 0.034초

Hardware Implementation of High-Speed Active Vibration Control System Based on DSP320C6713 Processor

  • Kim, Dong-Chan;Choi, Hyeung-Sik;Her, Jae-Gwan;You, Sam-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.437-445
    • /
    • 2008
  • This paper deals with the experimental assessment of the vibration suppression of the smart structures. First. we have presented a new high-speed active control system using the DSP320C6713 microprocessor. A peripheral system developed is composed of a data acquisition system, N/D and D/A converters, piezoelectric (PZT) actuator/sensors, and drivers for fast data processing. Next, we have tested the processing time of the peripheral devices, and provided the corresponding test results. Since fast data processing is very important in the active vibration control of the structures, we have focused on achieving the fast loop times of the control system. Finally, numerous experiments were carried out on the aluminum plate to validate the superior performance of the vibration control system at different control loop times.

차륜 진동을 고려한 능동 현가계 제어 (Control of Active Suspension System Considering Wheel-Hop)

  • 이동락;한기봉;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.420-424
    • /
    • 1994
  • In this paper, an active suspension system considering the wheel hop is studied for a quarter car model. A LQ controller controls an active suspension system in which a vibration absorber is attached to the wheel axis. The vibration absorber is adopted to reduce the vibration near the natural frequency of the unsprung mass, and the LQ controller is used to control the vibration near the natural frequency of the sprung mass. The perfomance of the control system considering the wheel hop is compared with that of a LQ control system.

  • PDF

HILS를 통한 무인항공기 카메라 지지 능동 마운트 시스템의 진동제어 성능 평가 (Performance Evaluation on an Active Camera Mount System for UAV via Hardware-in-the-loop-simulation)

  • 오종석;최승복;조한준;이철희;조명우
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.767-773
    • /
    • 2010
  • In the present work, vibration control performance of piezoactuator-based active mount system for unmanned aero vehicle(UAV) equipment is evaluated via hardware in the loop simulation(HILS). At first, the vibration level of UAV is measured and from this vibration data, the proper piezostack actuator is selected. Then, the dynamic model of active mount system including four active mounts and UAV camera equipment is derived. In order to evaluate vibration control performance, the HILS system is constructed. The proposed mount is prepared as hardware part and the other mounts are considered in software part. A sliding mode controller is designed and implemented to the HILS system. Effective vibration control results are presented in both time and frequency domains.

무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가 (Evaluation of Vibration Control Performance of Camera Mount System for UAV)

  • 오종석;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.407-412
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle (UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.

  • PDF

무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가 (Evaluation of Vibration Control Performance of Camera Mount System for UAV)

  • 오종석;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1315-1321
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle(UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.

Synchronous Vibration Control of a Rigid Rotor System using Active Air Bearing

  • Kwon, Tae-Kyu;Qiu, Jin-Hao;Tani, Jun-Ji;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권2호
    • /
    • pp.87-94
    • /
    • 2002
  • This paper presents the synchronous vibration control of a rotor system using an Active Air Bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by the pivots containing piezoelectric actuators and their radial positions can be actively controlled by applying voltage to the actuators. Disturbances and various kinds of external forces can cause the shaft vibration as well as the change of the air film thickness. The dynamic behaviors of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The PID controller is applied to the tilting-pad gas bearing system with three pads, two of which contain piezoelectric actuators. To test the validity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

능동 공기 베어링에 의한 로터계 동기진동의 PID제어 (PID Control of a Synchronous Rotor System Vibration with Active Air Bearing)

  • 권대규;이영춘;이성철
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.32-39
    • /
    • 2001
  • This paper presents the synchronous vibration control of a rotor system using an Active Air Bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by the pivots containing piezoelectric actuators and their radial positions can be actively controlled by applying voltage to the actuators. Disturbances and various kinds of external force can cause the shaft vibration as well as the change of the air film thickness. The dynamic behaviors of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The PID controller is applied to the tilting-pad gas bearing system with three pads, two of which contain piezoelectric actuators. To test the vapidity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

  • PDF

능동 하이브리드 마운트 시스템의 진동제어 성능 평가 : 실험적 고찰 (Evaluation of Vibration Control Performance for Active Hybrid Mount System : Experimental Investigation)

  • 오종석;최승복;벤큐오;문석준;최상민
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.455-460
    • /
    • 2011
  • In this work, an active hybrid mount using piezostack actuator and rubber element is manufactured, and its vibration control performance is evaluated via feedforward control. A hybrid active mount featuring inertia type of piezostack actuator is proposed and manufactured. After describing the configuration of the hybrid mount, a mount system is then constructed. To attenuate vibrations from vibration sources, a feedfoward controller is experimentally implemented to the system. Vibration control performances are evaluated at each mount. Effective control performances such as accelerations are obtained and presented in frequency domains.

능동 하이브리드 마운트 시스템의 진동제어 성능 평가 : 실험적 고찰 (Evaluation of Vibration Control Performance for Active Hybrid Mount System : Experimental Investigation)

  • 오종석;최승복;벤큐오;문석준;최상민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.85-90
    • /
    • 2011
  • In this work, an active hybrid mount using piezostack actuator and rubber element is manufactured, and its vibration control performance is evaluated via feedforward control. A hybrid active mount featuring inertia type of piezostack actuator is proposed and manufactured. After describing the configuration of the hybrid mount, a mount system is then constructed. To attenuate vibrations from vibration sources, a feedforward controller is experimentally implemented to the system. Vibration control performances are evaluated at each mount. Effective Control performances such as accelerations are obtained and presented in frequency domains.

  • PDF

능동 동흡진기를 이용한 차량의 능동진동제어 실험 (Active Vibration Control Experiment on Automobile Using Active Vibration Absorber)

  • 양동호;곽문규;김정훈;박운환;오상훈
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.741-751
    • /
    • 2011
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mounts have been developed to cope with such specifications. In this study, the active vibration absorber which can be attached to the sub-frame of automobile is used for the suppression of vibrations caused by engine. The active vibration absorbing system consists of sensor, actuator and controller where a control algorithm is implemented using DSP. The vibration caused by engine reveals harmonic disturbances varying with engine revolution. Therefore, the control algorithm should be able to cope with harmonic disturbances. In this study, the modified higher harmonic control technique which can selectively suppress harmonic disturbance is considered. Experimental results on automobile show that the proposed active vibration absorbing system is effective in suppressing vibrations caused by engine.