• Title/Summary/Keyword: Active State

Search Result 1,741, Processing Time 0.025 seconds

Voltage Control Strategy of new 3-phase Line-Interactive UPS System using AC Line Reactor and Parallel-Serise Active Filter (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 Line-Interactive UPS 시스템의 전압제어 방식)

  • Ji, Jun-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.201-203
    • /
    • 2005
  • A new 3-phase line-interactive UPS(Uninterruptible Power Supply) system with parallel-series active power-line conditioning capability using AC line reactor and two four-leg PWM VSCs(Voltage Source Converters) was introduced recently, In this paper, the strategy of voltage control in suggested UPS system is explained. The objective of proposed voltage controllers in parallel(shunt) and series PWM VSC is to guarantee satisfactory characteristics in steady state and transient state.

  • PDF

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper

  • Sateesh, B.;Maiti, Dipak K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.39-56
    • /
    • 2009
  • Vibration is an undesirable phenomenon in a dynamic system like lightly damped aerospace structures and active vibration control has gradually been employed to suppress vibration. The objective of the current investigation is to introduce an active torsional magneto-rheological (MR) fluid based damper for vibration control of a typical nose landing gear. They offer the adaptability of active control devices without requiring the associated large power sources. A torsional damper is designed and developed based on Bingham plastic shear flow model. The numerical analysis is carried out to estimate the damping coefficient and damping force. The designed damper is fabricated and an experimental setup is also established to characterize the damper and these results are compared with the analytical results. A typical FE model of Nose landing gear is developed to study the effectiveness of the damper. Open loop response analysis has been carried out and response levels are monitored at the piston tip of a nose landing gear for various loading conditions without damper and with MR-damper as semi-active device. The closed-loop full state feedback control scheme by the pole-placement technique is also applied to control the landing gear instability of an aircraft.

Dynamic Boundary Tracking Control in Active Sensor Network (동적 센서네트워크에서의 유동적 경계선 추종 제어)

  • Jang, Seyong;Lee, Giroung;Song, Bongsob;Chwa, Dongkyoung;Hong, Sukkyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1628-1635
    • /
    • 2008
  • In this paper, the motion coordination algorithm of mobile agents in active sensor network is proposed to track the dynamic boundary for environmental monitoring. While most of dynamic boundary tracking algorithms in the literature were studied under the assumption that the boundary and/or its evolving rate is known a priori, the proposed algorithm is assumed that the individual active agent can measure the state of environment locally without any information of the boundary. When the boundary is evolving dynamically, the formation of active agents is designed to achieve two objectives. One is to track boundary layer based on the measured information and a small deviation. The other is to maintain a uniform distance between adjacent agents. The algorithm structure based on a state diagram is proposed to achieve these two objectives. Finally, it will be shown in the simulations that all given agents converge to a desired boundary layer and maintain a formation along the boundary. (e.g., a circle, an ellipse, a triangle and a rectangle)

Fuzzy-sliding mode control of a full car semi-active suspension systems with MR dampers

  • Zheng, L.;Li, Y.N.;Baz, A.
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.261-277
    • /
    • 2009
  • A fuzzy-sliding mode controller is presented to control the dynamics of semi-active suspension systems of vehicles using magneto-rheological (MR) fluid dampers. A full car model is used to design and evaluate the performance of the proposed semi-active controlled suspension system. Four mixed mode MR dampers are designed, manufactured, and integrated with four independent sliding mode controllers. The siding mode controller is designed to decrease the energy consumption and maintain robustness. In order to overcome the chattering of the sliding mode controllers, a fuzzy logic control strategy is merged into the sliding mode controller. The proposed fuzzy-sliding mode controller is designed and fabricated. The performance of the semi-active suspensions is evaluated in both the time and frequency domains. The obtained results demonstrate that the proposed fuzzy-sliding mode controller can effectively suppress the vibration of vehicles and improve their ride comfort and handling stability. Furthermore, it is shown that the "chattering" of the sliding mode controller is smoothed when it is integrated with a fuzzy logic control strategy. Although the cost function of the fuzzy-sliding mode control is a slightly higher than that of a classical LQR controller, the control effectiveness and robustness are enhanced considerably.

A Hybrid Control Development to Suppress the Noise in the Rectangular Enclosure using an Active/Passive Smart Foam Actuator

  • Kim Yeung-Shik;Kim Gi-Man;Roh Cheal-Ha;Fuller C. R.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.37-43
    • /
    • 2005
  • This paper presents a hybrid control algorithm for the active noise control in the rectangular enclosure using an active/passive foam actuator. The hybrid control composes of the adaptive feedforward with feedback loop in which the adaptive feedforward control uses the well-known filtered-x LMS(least mean square) algorithm and the feedback loop consists of the sliding mode controller and observer. The hybrid control has its robustness for both transient and persistent external disturbances and increases the convergence speed due to the reduced variance of the jiltered-x signal by adding the feedback loop. The sliding mode control (SMC) is used to incorporate insensitivity to parameter variations and rejection of disturbances and the observer is used to get the state information in the controller deign. An active/passive smart foam actuator is used to minimize noise actively using an embedded PVDF film driven by an electrical input and passively using an absorption-foam. The error path dynamics is experimentally identified in the form of the auto-regressive and moving-average using the frequency domain identification technique. Experimental results demonstrate the effectiveness of the hybrid control and the feasibility of the smart foam actuator.

Expression, Purification, and Biological Characterization of The Amino-Terminal Fragment of Urokinase in Pichia pastoris

  • Li, Jianping;Lin, Yuli;Zhuang, Hongqin;Hua, Zi-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1197-1205
    • /
    • 2013
  • Urokinase (uPA) and its receptor (uPAR) play an important role in tumor growth and metastasis. Targeting the excessive activation of this system as well as the proliferation of the tumor vascular endothelial cell would be expected to prevent tumor neovasculature and halt the tumor development. In this regard, the amino-terminal fragment (ATF) of urokinase has been confirmed as effective to inhibit the proliferation, migration, and invasiveness of cancer cells via interrupting the interaction of uPA and uPAR. Previous studies indicated that ATF expressed in Escherichia coli was mainly contained in inclusion bodies and also lacked posttranslational modifications. In this study, the biologically active and soluble ATF was cloned and expressed in Pichia pastoris. The recombinant protein was purified to be homogenous and confirmed to be biologically active. The yield of the active ATF was about 30 mg/l of the P. pastoris culture medium. The recombinant ATF (rATF) could efficiently inhibit angiogenesis, endothelial cell migration, and tumor cell invasion in vitro. Furthermore, it could inhibit in vivo xenograft tumor growth and prolong the survival of tumor-bearing mice significantly by competing with uPA for binding to cell surfaces. Therefore, P. pastoris is a highly efficient and cost-effective expression system for large-scale production of biologically active rATFs for potential therapeutic application.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.