• Title/Summary/Keyword: Active Noise Filter Control System

Search Result 85, Processing Time 0.031 seconds

Active noise control of a second-order Volterra system with an acoustic feedback path (음향 피드백 경로를 가진 2차 볼테라 시스템의 능동소음제어)

  • Lee, Jung-Jae;Kim, Kyoung-Jae;Seo, Jae-Bum;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.238-239
    • /
    • 2008
  • In this paper, active noise control (ANC) of a Volterra system with a nonlinear secondary path is proposed in the presence of a linear acoustic feedback, whereby the conventional ANC of a linear system with online acoustic feedback-path modeling is further extended to ANC of a Volterra system with a linear acoustic feedback path. In particular, the proposed ANC system consists of two adaptive Volterra filters (for nonlinear noise control and nonlinear adaptive noise cancellation) and one feedback-path modeling filter. Simulation results show that the proposed approach yields more effective reduction of disturbances arising from the acoustic feedback, in addition to high nonlinear ANC performance.

  • PDF

Design of IIR Structure Active Mufflers using Stabilized Filter Algorithms (안정화 필터 알고리즘을 적용한 IIR 구조 능동 머플러의 설계)

  • Ahn, Dong-Jun;Nam, Hyun-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.570-575
    • /
    • 2019
  • Active muffler is implemented by applying active noise control technique to reduce exhaust noise of automobile muffler. Conventional Filtered_x LMS algorithm has a problem that the degree of control filter becomes very large and convergence deteriorates when acoustic feedback is present. The recursive LMS algorithm can compensate for this problem because it can be easily diverted in the adaptive filter adaptation process. In this paper, the structure of the primary path and the secondary path transfer function is designed as the IIR filter to improve the convergence performance and the computational burden, and the stabilization filter algorithm is applied to secure stability which is a disadvantage of the IIR filter structure. The stabilization filter algorithm plays a role of pulling the pole into the unit circle to prevent the pole of the transfer function corresponding to the acoustic feedback from diverging during the adaptation process. In this way, the computational burden of the active muffler system and the convergence performance can be improved. In order to show the usefulness of the proposed system, we compared the performance of the proposed Filtered_x LMS algorithm with the performance of the proposed system for the exhaust sound of a diesel engine, which is a variable environment. Compared to conventional algorithm, proposed algorithm's computational burden is less than half, and convergence performances are more than 4 times.

Active Control Experiments on High-speed Elevator Vibrations (고속 엘리베이터 능동진동제어 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.325-332
    • /
    • 2011
  • This paper is concerned with the active control experiments on elevator vibrations by means of the active roller guide. To this end, a roller guide was designed using a voice-coil actuator and linear guide. A simple proportional control algorithm combined with the band-pass filter was implemented using the DSP. Based on the initial experiments, a new control system which can handle lateral and front-back vibrations of elevator was built and tested using the elevator test tower. The experimental results show that the elevator vibrations are reduced by the active control technique.

Active Vibration Control of A Time-Varying Cantilever Beam Using Band Pass Filters and Artificial Neural Network (신경회로망과 능동대역필터를 이용한 시변 외팔보 능동 진동제어)

  • Hamm, Gil;Rhee, Huinam;Yoon, Doo Byung;Han, Soon Woo;Park, Jin Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.353-354
    • /
    • 2014
  • An active vibration control technique of a time-varying cantilever beam is proposed in this study. A simple in-house coil sensor instead of expensive commercial sensors was used to measure the vibrational displacement of the beam. Active band pass filters and artificial neutral net works detect the frequencies, amplitudes, and phases of the main vibration mode. The time constants of the low pass filter representing the positive position feedback controller are updated in real-time, which generates the control voltage input to actuate the piezoelectric actuator and suppress the vibration. An experiment was successfully performed to verify the algorithm for a cantilever beam, which fundamental natural frequency arbitrarily varies between 9 Hz ~ 18 Hz. The present active vibration suppression technique can be applied to variety of structures which undergoes large variation of dynamic characteristics while operating.

  • PDF

A Double Loop Control Model Using Leaky Delay LMS Algorithm for Active Noise Control (능동소음제어를 위한 망각형 지연 LMS 알고리듬을 이용한 이중루프제어 모델)

  • Kwon, Ki-Ryong;Park, Nam-Chun;Lee, Kuhn-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.28-36
    • /
    • 1995
  • In this paper, a double loop control model using leaky delay LMS algorithm are proposed for active noise control. The proposed double loop control model estimates the loudspeaker characteristic and the error path transfer function with on-line using only gain and acoustic time delay to reduce computation burden. The control of error signal through double loop control scheme makes the more robust cntrol system. The input signal of filter to estimate acoustic time delay is used difference between input signal of input microphone and adaptive filter output. And also, in nonstationary environments, the leaky delay LMS algorithm is employed to counteract parameter drift of delay LMS algorithm. For practical noise signal, the proposed double loop control model reduces noise level about 12.9 dB.

  • PDF

A Study about Modeling and Control of Dynamic Absorber for Vehicle by Using Active Viscous Damping (능동적 점성감쇠를 이용한 차량용 동적 흡진기의 모델링과 제어에 관한 연구)

  • 김대원;배준영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • Generally, A Dynamic Absorber by using Active viscous Damping is highlighted for effective suspension system, such as improved ride comfort and handling in the market. Lately, this system based on the Sky-Hook damper theory is introduced by the name of "Active Dynamic Absorber" to us. This system has an excellent performance in contrast to Passive. Adaptive Dynamic Absorber, besides having low cost components of system, low energy consumption. light weight of system. In this viewpoint. most of car-maker will adopt this system in the near future. For this reason, we developed Dynamic Absorber by using Active viscous Damping which is equipped with continuously variable Dynamic Absorber and Control logic consisting Filter and Estimator. control apparatus of Dynamic Absorber operated by 16-bit microprocessor of high performance. variable device of viscous Damping. G-sensor so on. In this paper. several important points of development procedure for realizing this system will be described with results in which is obtained from experiment by simulation and Full car test in Proving ground. respectively.pectively.

  • PDF

Adoptive IIR Fillers for Active Noise Control (능동소음제어를 위한 적용 IIR 필터)

  • 남현도
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.112-118
    • /
    • 2002
  • The adaptive m filters is more effective than m filters when acoustic feedback exists, in which cause an order of a FIR filter must be very large if some of poles of the ideal control filter are near the unit circle. But the IIR filters may have stability problems especially when the adaptive algorithm is not converged. In this paper, a stabilizing procedure for adaptive IIR filters is proposed. In the beginning of the ANC system, it improve a stability by pulling the poles of the IIR filter to the center of the unit circle, and it returns the poles to their original positions after the filter converge. Computer simulations and experiments are performed to show the effectiveness of proposed schemes.

On-line Frequency Estimation Based on Cascade Adaptive Notch Filter and Application to Active Noise Control

  • Kim, Sunmin;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.81-84
    • /
    • 1998
  • For ANC systems applied to aircrafts or passenger ships, engines from which reference signals are usually measured are located so far from seats where main part of controllers are placed. It can make feedforward ANC scheme difficult to implement or very costly. Feedback ANC algorithms which do not require reference signals and use error signals alone to update the filter, are usually sensitive to measurement noise ' and impulse noise. In this paper, reference signal needed for the feedforward control is not measured directly but generated with the estimated frequencies. Cascade adaptive notch filter (ANF), which has the low computational burden, is used to implement ANC system in real time. Several ANFs of order 2 are connected in series to estimate multiple sinusoids. Computer simulations and experiments in the laboratory for verifying efficacy of the proposed algorithm are carried out.

  • PDF

Structural Optimization of Active Vehicle Suspension Systems (능동형 차량 현가장치의 성능 향상을 위한 구조 최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1381-1388
    • /
    • 1993
  • This paper presents a method for the simultaneous optimal design of structural and control systems. Sensitivities of performance index with respect to structural design variables are analyzed. The structural design variables are optimized to minimize the performance index by use of conjugate gradient method. The method is applied to a half model of an active vehicle suspension system with elastic body moving on a randomly profiled road. The suspension control force of an optimally controlled system in the presence of measurement errors are calculated by use of linear quadratic Gaussian control theory and Kalman filter theory. The performance index contains ride comfort, road holding and working space of suspension. The structural design variables taken are stiffness, daming properties and the position of the suspension system. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of an optimal simultaneous structure/control system is compared with that of an optimal controlled system.