• Title/Summary/Keyword: Active Metal

Search Result 868, Processing Time 0.027 seconds

Ionic Recognition with Quinone-Derivatized Calixarenes in Solution and at Self-Assembled Monlayers

  • Kim Hasuck;Kang Sun Kil;Chung Taek Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.69-71
    • /
    • 2000
  • Redox-active calix[4]arenes with carboxylic acid and disulfide groups were prepared and spontaneous deposition on silver and gold surfaces was observed. Owing to their unusual structure, the calix[4]arenes exhibit selective affinity fur alkaline earth metal ions in aqueous media. When annular ionophores are immobilized on the surface, voltammetric and spectroscopic studies show the entrapment of metal ions. Furthermore, it was possible to reversibly capture and remove the ions using strong chelating agents such as ethylenediaminetetraacetic acid (EDTA).

Current-Voltage Characteristics of Molecular Electronic Devices Using a Amino-Style Derivatives (Amino-style 유도체를 이용한 분자 전자 소자의 전류-전압 특성에 관한 연구)

  • Kim, So-Young;Koo, Ja-Ryong;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.882-885
    • /
    • 2004
  • Organic molecules have many properties that make them attractive for electronic applications. We have been examining the progress of memory cell by using molecular-scale switch to give an example of the application using both nanoscale components and Si-technology. In this study, molecular electronic devices were fabricated with amion style derivatives as redox-active component to compare to the devices using Zn-Porphyrin derivatives. This molecule is amphiphilic to allow monolayer formation by the Langmuir-Blodgett (LB) method, and then this LB monolayer is inserted between two metal electrodes. According to current-voltage (I-V) characteristics, it was found that the devices show remarkable hysteresis behavior and can be used as memory devices at ambient conditions, when aluminum oxide layer was existed on bottom electrode. Diode-like characteristics were measured only, when Pt layer was existed as bottom electrode. It was also found that this metal layer interacts with the organic molecules and acts as a protecting layer, when thin Ti layer was inserted between the organic molecular layer and the top Al electrode. These electrical properties of the devices may be applicable to active components for the memory and/or logic gates in the future.

  • PDF

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

Induction Heating Water Heater using Dual Mode Phase Shifted ZVS-PWM High Frequency Resonant Inverter (듀얼 모드 위상 시프트 ZVS PWM 제어 고주파 공진형 인버터를 이용한 IH 온수기)

  • Lee, Sang-Wook;Ryu, Yeoi-Joung;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.82-89
    • /
    • 2018
  • This paper presents a novel prototype of dual mode control based phase shift ZVS PWM high frequency load resonant inverter with lossless snubber capacitors in addition to a single active auxiliary resonant snubber for electromagnetic induction heating(IH) foam metal based consumer fluid dual packs(DPA) heater. The operating principle in steady state and unique features of this voltage source soft switching high frequency inverter circuit topology are described in this paper. The lossless snubber and auxiliary active resonant snubber assisted constant frequency phase shift ZVS PWM high frequency load resonant inverter employing IGBT power modules actually is capable of achieving zero voltage soft commutation over a widely specified power regulation range from full power to low power. The steady state operating performances of this dual mode phase shift PWM series load resonant high frequency inverter are evaluated and discussed on the basis of simulation and experimental results for induction heated foam metal heater which is designed for compact and high efficient moving fluid heating appliance in the consumer pipeline systems.

A Study on the Emotional Language Imagery according to Popular Music Genres for Development of Textile Print Design Ideas I (텍스타일 프린트 디자인 발상을 위한 대중음악 장르별 감성 언어이미지 연구 I)

  • Kim, Ji Yeon;Oh, Kyung Wha
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.354-365
    • /
    • 2014
  • This study investigates the positioning of emotional language imagesin popular music genres for developing textile print design ideas. Auditory and synaesthetic imagery were employed to deduct emotional language imageries from popular music genres and analyze differences in emotional language imageries according to popular music genres. Six genres of popular music were selected as stimulus and a survey was conducted to analyze emotional language imagery differences and similarities depending on popular music genres. The results of this study were: The results of the factor analysis and the reliability test on emotional language imagery showed factorial structures that include Lyrical-Feminine, Intense-Masculine, Euphoric-Active, Gloomy-Melancholy, Abstruse-Sophisticated, and Addictive-Continuous. The results of the mean scores of emotional language imagery of each popular music genre showed that respondents tended to perceive that ballad and new age music are similar and hip-hop & rap, dance, and metal-rock are similar. Based on the multidimensional scaling analysis, new age positioned Lyrical-Feminine, metal-rock positioned Intense-Masculine, dance music positioned Euphoric-Active, and ballad positioned Gloomy-Melancholy. This study provides elementary resources to inspire innovative textile prints designed through different characteristics of emotional language imagery according to each popular music genre.

Ruthenium Oxide Nanoparticles Electrodeposited on the Arrayed ITO Nanorods and Its Application to Supercapacitor Electrode

  • Ryu, Ilhwan;Lee, Jinho;Park, Dasom;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.296-296
    • /
    • 2013
  • Supercapacitor is a capacitor with extraordinarily high energy density, which basically consists of current collector, active material and electrolyte. Ruthenium oxide ($RuO_2$) is one of the most widely studied active materials due to its high specific capacitance and good electrical conductivity. In general, it is known that the coating of $RuO_2$ on nanoarchitectured current collector shows improved performance of energy storage device compared to the coating on the planar current collector. Especially, the surface structure with standing coaxial nanopillars are most desirable since it can provide direct paths for efficient charge transport along the axial paths of each nanopillars and the inter-nanopillar spacing allows easy access of electrolyte ions. However, well-known fabrication methods for metal or metal oxide nanopillars, such as the process using anodize aluminum oxide (AAO) templates, often require long and complicated nanoprocess.In this work, we developed relatively simple method fabricating indium tin oxide (ITO) nanopillars via sputtering. We also electrodeposited $RuO_2$ nanoparticles onto these ITO nanopillars and investigated its physical and electrochemical properties.

  • PDF

A Study on the Crevice Corrosion for Ferritic Stainless Steel by Micro Capillary Tube Method

  • Na Eun-Young;Ko Jae-Yong;Baik Shin-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.179-182
    • /
    • 2004
  • The aim of this study is to investigate the initiation and propagation of crevice corrosion for ferritic stainless steel in artificial crevice based on micro capillary tube method. The 430 stainless steel in artificial crevice is potentiostatically polarized in different sodium chloride solutions. Potentiodynamic and potentiostatic polarization data were measured in situ. The potentials in the crevice were measured by depth profile using the 0.04 mm diameter micro capillary tube inserted in the crevice. The potentials in the crevice ranged from -220 mV to -360 mV vs SCE from opening to bottom of crevice, which are lower than the external surface potential, -200 mV vs SCE. Such a potential drop induced the change of the metal surface state from passive to active. The surface of metal is located in passive state in -200 mV but the inner surface keeps active state below -220 mV, Thus these results show that the It drop mechanism in the crevice was more objective for evaluation and the method was easier to reproduce. Therefore the potential drop is one of the reasons for crevice corrosion by measuring the potentials in narrow crevice with a new micro measuring system.

A SIMPLE DISK-HALO MODEL FOR THE CHEMICAL EVOLUTION OF OUR GALAXY

  • Lee, S.W.;Ann, H.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.55-71
    • /
    • 1981
  • On the basis of observational constraints, particularly the relationship between metal abundance and cumulative stellar mass, a simple two-zone disk-halo model for the chemical evolution of our Galaxy was investigated, assuming different chemical processes in the disk and halo and the infall rates of the halo gas defined by the halo evolution. The main results of the present model calculations are: (i) The halo formation requires more than 80% of the initial galactic mass and it takes a period of $2{\sim}3{\times}10^9$ yrs. (ii) The halo evolution is divided into two phases, a fast collapse phase ($t=2{\sim}3{\times}10^8$ yrs) during which period most of the halo stars $({\sim}95%)$ are formed and a later slow collapse phase which is characterized by the chemical enrichment due to the inflow of external matter to the halo. (iii) The disk evolution is also divided into two phases, an active disk formation phase with a time-dependent initial mass function (IMF) up to $t{\approx}6{\times}10^9$ yrs and a later steady slow formation phase with a constant IMF. It is found that at the very early time $t{\approx}5{\times}10^8$ yrs, the metal abundance in the disk is rapidly increased to ${\sim}1/3$ of the present value but the total stellar mass only to ${\sim}10%$ of the present value, finally reaching about 80% of the present values toward the end of the active formation phase.

  • PDF

Highly stable amorphous indium.gallium.zinc-oxide thin-film transistor using an etch-stopper and a via-hole structure

  • Mativenga, M.;Choi, J.W.;Hur, J.H.;Kim, H.J.;Jang, Jin
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.47-50
    • /
    • 2011
  • Highly stable amorphous indium.gallium.zinc-oxide (a-IGZO) thin-film transistors (TFTs) were fabricated with an etchstopper and via-hole structure. The TFTs exhibited 40 $cm^2$/V s field-effect mobility and a 0.21 V/dec gate voltage swing. Gate-bias stress induced a negligible threshold voltage shift (${\Delta}V_{th}$) at room temperature. The excellent stability is attribute to the via-hole and etch-stopper structure, in which, the source/drain metal contacts the active a-IGZO layer through two via holes (one on each side), resulting in minimized damage to the a-IGZO layer during the plasma etching of the source/drain metal. The comparison of the effects of the DC and AC stress on the performance of the TFTs at $60^{\circ}C$ showed that there was a smaller ${\Delta}V_{th}$ in the AC stress compared with the DC stress for the same effective stress time, indicating that the trappin of the carriers at the active layer-gate insulator interface was the dominant degradation mechanism.

Extension of the Dynamic Range in the CMOS Active Pixel Sensor Using a Stacked Photodiode and Feedback Structure

  • Jo, Sung-Hyun;Lee, Hee Ho;Bae, Myunghan;Lee, Minho;Kim, Ju-Yeong;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.256-261
    • /
    • 2013
  • This paper presents an extension of the dynamic range in a complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) using a stacked photodiode and feedback structure. The proposed APS is composed of two additional MOSFETs and stacked P+/N-well/P-sub photodiodes as compared with a conventional APS. Using the proposed technique, the sensor can improve the spectral response and dynamic range. The spectral response is improved using an additional stacked P+/N-well photodiode, and the dynamic range is increased using the feedback structure. Although the size of the pixel is slightly larger than that of a conventional three-transistor APS, control of the dynamic range is much easier than that of the conventional methods using the feedback structure. The simulation and measurement results for the proposed APS demonstrate a wide dynamic range feature. The maximum dynamic range of the proposed sensor is greater than 103 dB. The designed circuit is fabricated by the $0.35-{\mu}m$ 2-poly 4-metal standard CMOS process, and its characteristics are evaluated.