Browse > Article
http://dx.doi.org/10.1080/15980316.2011.563058

Highly stable amorphous indium.gallium.zinc-oxide thin-film transistor using an etch-stopper and a via-hole structure  

Mativenga, M. (Advanced Display Research Center, Kyung Hee University)
Choi, J.W. (Advanced Display Research Center, Kyung Hee University)
Hur, J.H. (Advanced Display Research Center, Kyung Hee University)
Kim, H.J. (Advanced Display Research Center, Kyung Hee University)
Jang, Jin (Advanced Display Research Center, Kyung Hee University)
Publication Information
Abstract
Highly stable amorphous indium.gallium.zinc-oxide (a-IGZO) thin-film transistors (TFTs) were fabricated with an etchstopper and via-hole structure. The TFTs exhibited 40 $cm^2$/V s field-effect mobility and a 0.21 V/dec gate voltage swing. Gate-bias stress induced a negligible threshold voltage shift (${\Delta}V_{th}$) at room temperature. The excellent stability is attribute to the via-hole and etch-stopper structure, in which, the source/drain metal contacts the active a-IGZO layer through two via holes (one on each side), resulting in minimized damage to the a-IGZO layer during the plasma etching of the source/drain metal. The comparison of the effects of the DC and AC stress on the performance of the TFTs at $60^{\circ}C$ showed that there was a smaller ${\Delta}V_{th}$ in the AC stress compared with the DC stress for the same effective stress time, indicating that the trappin of the carriers at the active layer-gate insulator interface was the dominant degradation mechanism.
Keywords
TFT; oxide semiconductor; stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Riedl, P. Gorrn, P. Holzer, and W. Kowalsky, Phys. Stat. Sol. (RRL) 1, 175 (2007).   DOI   ScienceOn
2 J.-M. Lee, I.-T. Cho, J.-H. Lee, and H.-I. Kwon, Appl. Phys. Lett. 93, 093504 (2008).   DOI   ScienceOn
3 A. Suresh and J.F. Muth, Appl. Phys. Lett. 92, 033502 (2008).   DOI   ScienceOn
4 W. Lim, S.-H. Kim, Y.-L. Wang, J.W. Lee, D.P. Norton, and S.J. Pearton, J. Vac. Sci. Technol. B 26, 959 (2008).   DOI
5 J.-S. Park, K.S. Kim, Y.-G. Park, Y.-G. Mo, H.D. Kim, and J.K. Jeong, Adv. Mater. 21, 329 (2008).
6 F.R. Libsch and J. Kanicki, Appl. Phys. Lett. 62, 1286 (1993).   DOI   ScienceOn
7 M.E. Lopes, H.L. Gomes, M.C.R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett. 95, 063502 (2009).
8 M. Kim, J.H. Jeong, H.J. Lee, T.K. Ahn, H.S. Shin, J.-S. Park, J.K. Jeong, Y.-G. Mo, and H.D. Kim, Appl. Phys. Lett. 90, 212114 (2007).   DOI   ScienceOn
9 H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumoni, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006).   DOI   ScienceOn
10 M.D.H. Chowdhury, P. Migliorato, and J. Jang, Appl. Phys. Lett. 97, 173506 (2010).   DOI   ScienceOn
11 H. Hosono, J. Non-Cryst. Solids 352, 851 (2006).   DOI   ScienceOn
12 R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M, Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, J. SID 15, 915 (2007).