• Title/Summary/Keyword: Active Magnetic Bearing (AMB)

Search Result 51, Processing Time 0.027 seconds

Study on Controller Design for an Active Magnetic Bearing Milling Spindle Using Chatter Stability Analysis (채터 안정성 해석을 이용한 자기베어링 밀링 주축의 제어기 설계 연구)

  • 경진호;박종권;노승국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.440-445
    • /
    • 2002
  • The characteristic equation for regenerative chatter loop including a delay element replaced by a rational function is presented by a linear differential-difference equation, accounting for the dynamics of the AMB controllers, the uncut chip thickness equation and the cutting process as well as the rigid spindle dynamics itself. The chatter stability analysis of a rigid milling spindle suspended by 5-axes active magnetic bearings(AMBs) is also performed to investigate the influences of the damping and stiffness coefficients of AMBs on the chatter free cutting conditions, as they are allowed to vary within the stable region formed by the AMB control gains. Several cutting tests varying the derivative gains of the AMB were performed to investigate the regenerative chatter vibrations, and it was concluded that the theoretical analysis results are in good consistency with the test results.

  • PDF

A Small Disk-type Hybrid Self-healing Motor (소형 원판형 하이브리드 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.338-348
    • /
    • 2001
  • A hybrid self-hearing motor, which Is a functional combination of general permanent magnet (PM) motor and hybrid active magnetic bearing(AMB), was proposed a few years ago. In this paper the hybrid self-bearing motor is modified to a disk type, in which one of two magnetic hearings was substituted for a thin yoke to make the system more compact. An outer rotors in this self-hearing motor is actively controlled only in two radial directions while the ocher motions are passively salable owing to the disk-type structure. Main advantages of the proposed self-hearing motor are simple control mechanism, low power consumption and smart structure. Mathematical model for the magnetic force Is built wish consideration of the radial displacement of the rotor. The model helps us not only to design a levitation controller but also to expect the system performance. Some experimental results show good capability and feasibility of the Proposed self-bearing motor.

  • PDF

Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB

  • Soo Jeon;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1583-1593
    • /
    • 2002
  • This paper discusses the model validation and vibration suppression of an AMB flexible rotor via additional LQG controller. The main difficulty in the vibration suppression of the flexible rotor using AMB is to realize a controller that can minimize resonance without injuring the stabilized rigid modes. In order to solve this problem, simple scheme for system modeling and controller design are developed. Firstly, the AMB flexible rotor is stabilized with a PID controller, which leads to a new stable rotor-bearing system. Then, authors propose the model validation procedure using measured open-loop frequency responses to obtain an accurate model of the AMB flexible rotor system. After that, LQG controller with modal weighting is designed to suppress resonances of the stable rotor-bearing system. Due to the poor controllability and observability of flexible modes compared to rigid ones, balancing of two Gramians is prerequisite for the fair LQG controller design. Simulation with step disturbance and experimental results of unbalance response up to 10,000 rpm verified the effectiveness of the proposed scheme.

Sliding Mode Control for an Active Magnetic Bearing System (능동자기베어링계를 위한 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.82-88
    • /
    • 2008
  • This paper describes an application of sliding mode control to an active magnetic bearing(AMB) system. A sliding mode control is robust to model uncertainties and external disturbances. To ensure the authority of sliding mode control, model parameter uncertainties caused from linearization of electro-magnetic attractive force are analyzed and a domain of parameter uncertainties in which reachability to sliding surface is guaranteed is derived. The validity of the analysis is illustrated along with some simulation examples.

Base Acceleration Feedforward Control for an Active Magnetic Bearing System Subject to Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1028-1033
    • /
    • 2002
  • This paper concerns on a non-rotating axis-active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed feedforward control reduces the air-gap deviation to 29% that by feedback control alone.

  • PDF

Disturbance Compensation Control in Active Magnetic Bearing Systems by Filtered-x LMS Algorithm (전자기베어링에서 Filtered-x LMS 알고리즘을 이용한 외란보상 제어기 설계)

  • 강민식;강윤식;이대옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.447-450
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system. it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. A disturbance compensation control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate adaptively the frequency response function of the feedforward control which cancels disturbance responses. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

  • PDF

Optimal Acceleration Feedforward Control of Active Magnetic Bearing Systems Subject To Base Motion (베이스 운동을 받는 능동자기베어링계의 가속도 최적 앞먹임 제어)

  • 강민식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.84-91
    • /
    • 2003
  • This paper concerns on one-DOF non-rotating active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap while the base motion forces the axis to deviate from the desired air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed optimal feedforward control reduces the standard deviation of the air-gap to 29% that by feedback control alone.

Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm (베이스 가진을 받는 능동자기베어링 시스템에서 Filtered-x LMS 알고리듬을 이용한 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1712-1719
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system, it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. An optimal base acceleration feedforward control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate the frequency response function of the feedforward control which cancels base motions. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter (자기베어링 시스템을 가진지로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.342.1-342
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. (omitted)

  • PDF

Identification of Runout. Unbalance and Eddy Current Effect in Active Magnetic Bearing System Using LMS Algorithm (LMS 알고리즘을 이용한 전자기 베어링계에서의 런아웃, 불균형력 및 와전류 효과 규명)

  • 김하용;김승종;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.172-177
    • /
    • 2001
  • This paper proposes an adaptive feedforward controller (AFC) based on LMS for periodic disturbance rejection in active magnetic bearing system. The proposed controller does not alter the stability and robustness of the existing AMB system. It is shown that the control delay due to the eddy current as well as runout and unbalance can be identified and compensated using the estimated displacement from the measured magnetic flux. The simulation results confirm that the proposed scheme successfully identifies and compensates for the runout, unbalance and eddy current effect, leading to a high-precision magnetic bearing system.

  • PDF