• Title/Summary/Keyword: Active Learning

Search Result 1,196, Processing Time 0.024 seconds

Study on Active Learning & Facilitation Convergence Education Program for Enhancing Core Competency (4C) (핵심역량(4C) 증진을 위한 액티브러닝과 퍼실리테이션 융합 교육프로그램 연구)

  • Chung, Yoo Kyung
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2019
  • This study investigates Active Learning and Facilitation Convergence Education Program which can improve core competency to cope with vocational education in the fourth industrial revolution era. I applied the integrated advantages of Active Learning which enhances 'problem solving skill' and those of Facilitation for creative thinking idea to application design process coursework and verified the effectiveness of such education method through student satisfaction survey. I also designed application contents for the students who are familiar with the mobile environments and UI contents for data visualization which can help those students to improve their skills in software. Every coursework was conducted as a team project. As a result, Active Learning and Facilitation Convergence Education Program is found to be helpful in improving the basic skills and competencies required in college education. I hope this work helps to reduce the educational gap between industry and professional colleges.

The Impact of State Financial Support on Active-Collaborative Learning Activities and Faculty-Student Interaction

  • Choi, Eun-Mee;Park, Young-Sool;Kwon, Lee-Seung
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.2
    • /
    • pp.25-37
    • /
    • 2019
  • Purpose - The goal of this study is to analyze the differences in education performances between students of the government's financial support program and those who do not receive support at a local university in Korea. Research design, data, and methodology - The questionnaire used was NASEL. NASEL is considered a highly suitable survey tool for professors, courses, and performances in Korean universities. The 290 students who participated and 44 students do not participate in the financial support program were surveyed for 10 days. The characteristics of students were investigated by frequency analysis and technical statistics. The analysis of student collective characteristics used independent t and f-tests,and one-way ANOVA with IBM SPSS Statistics 22.0 for statistical purposes. Results - The p-value of the group receiving financial support and the group without financial support in active-collaborative learning is 0.167. The p-value of the economically supported group and the non-supported group of the faculty-student interaction is 0.281. The confidence coefficient of the active-collaborative learning questionnaire is 0.861. The reliability coefficient of the questionnaire for the faculty-student interaction questionnaire is 0.871. Conclusions - There are no clear differences in active-collaborative learning and faculty-student interaction between participating and non-participating students in the economic program.

An Inquiry of Constructs for an e-Learning Environment Design by Incorporating Aspects of Learners' Participations in Web 2.0 Technologies

  • PARK, Seong Ik;LIM, Wan Chul
    • Educational Technology International
    • /
    • v.12 no.1
    • /
    • pp.67-94
    • /
    • 2011
  • The major concern of e-learning environment design is to create and improve artifacts that support human learning. To facilitate effective and efficient learning, e-learning environment designers focused on the contemporary information technologies. Web 2.0 services, which empower users and allow the inter-transforming interactions between users and information technologies, have been increasingly changing the way that people learn. By adapting these Web 2.0 technologies in learning environment, educational technology can facilitate learners' abilities to personalize learning environment. The main purpose of this study is to conceptualize comprehensively constructs for understanding the inter-transforming relationships between learner and learning environment and mutable learning environments' impact on the process through which learners learn and strive to shape their learning environment. As results, this study confirms conceptualization of four constructs by incorporating aspects of design that occur in e-learning environments with Web 2.0 technologies. First, learner-designer refers to active and intentional designer who is tailoring an e-learning environment in the changing context of use. Second, learner's secondary design refers to learner's design based on the primary designs by design experts. Third, transactional interaction refers to learner's inter-changeable, inter-transformative, co-evolutionary interaction with technological environment. Fourth, trans-active learning environment refers to mutable learning environment enacted by users.

Keyphrase Extraction Using Active Learning and Clustering (Active Learning과 군집화를 이용한 고정키어구 추출)

  • Lee, Hyun-Woo;Cha, Jeong-Won
    • MALSORI
    • /
    • no.66
    • /
    • pp.87-103
    • /
    • 2008
  • We describe a new active learning method in conditional random fields (CRFs) framework for keyphrase extraction. To save elaboration in annotation, we use diversity and representative measure. We select high diversity training candidates by sentence confidence value. We also select high representative candidates by clustering the part-of-speech patterns of contexts. In the experiments using dialog corpus, our method achieves 86.80% and saves 88% training corpus compared with those of supervised method. From the results of experiment, we can see that the proposed method shows improved performance over the previous methods. Additionally, the proposed method can be applied to other applications easily since its implementation is independent on applications.

  • PDF

Active Learning Environment for the Heritage of Korean Modern Architecture: a Blended-Space Approach

  • Jang, Sun-Young;Kim, Sung-Ah
    • International Journal of Contents
    • /
    • v.12 no.4
    • /
    • pp.8-16
    • /
    • 2016
  • This research proposes the composition logic of an Active Learning Environment (ALE), to enable discovery by learning through experience, whilst increasing knowledge about modern architectural heritage. Linking information to the historical heritage using Information and Communication Technology (ICT) helps to overcome the limits of previous learning methods, by providing rich learning resources on site. Existing field trips of cultural heritages are created to impart limited experience content from web resources, or receive content at a specific place through humanities Geographic Information System (GIS). Therefore, on the basis of the blended space theory, an augmented space experience method for overcoming these shortages was composed. An ALE space framework is proposed to enable discovery through learning in an expanded space. The operation of ALE space is needed to create full coordination, such as a Content Management System (CMS). It involves a relation network to provide knowledge to the rule engine of the CMS. The application is represented with the Deoksugung Palace Seokjojeon hall example, by describing a user experience scenario.

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

Exploring Online Learning Profiles of In-service Teachers in a Professional Development Course

  • PARK, Yujin;SUNG, Jihyun;CHO, Young Hoan
    • Educational Technology International
    • /
    • v.18 no.2
    • /
    • pp.193-213
    • /
    • 2017
  • This study aimed to explore online learning profiles of in-service teachers in South Korea, focusing on video lecture and discussion activities. A total of 269 teachers took an online professional development course for 14 days, using an online learning platform from which web log data were collected. The data showed the frequency of participation and the initial participation time, which was closely related to procrastinating behaviors. A cluster analysis revealed three online learning profiles of in-service teachers: procrastinating (n=42), passive interaction (n=136), and active learning (n=91) clusters. The active learning cluster showed high-level participation in both video lecture and discussion activities from the beginning of the online course, whereas the procrastinating cluster was seldom engaged in learning activities for the first half of the learning period. The passive interaction cluster was actively engaged in watching video lectures from the beginning of the online course but passively participated in discussion activities. As a result, the active learning cluster outperformed the passive interaction cluster in learning achievements. The findings were discussed in regard to how to improve online learning environments through considering online learning profiles of in-service teachers.

Development of Semi-Active Control Algorithm Using Deep Q-Network (Deep Q-Network를 이용한 준능동 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.

Comparison between Traditional Classrooms and Active Learning Classrooms: The Impact of Learning Spaces on Student Perceptions (전통 교실과 Active Learning Classroom 간 비교 연구: 학습 공간이 대학생들의 인식에 미치는 영향을 중심으로)

  • Choi, Koun;Shin, Won-Sug;Kim, Myunglang
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.161-172
    • /
    • 2020
  • The purpose of this study is to compare students' perception shaped by two different university classrooms: Traditional Classroom and ALC(Active learning classroom). We conducted survey of 71 university students who were taught by an identical instructor using same pedagogy. The survey questionnaires asked respondents about their perceptions on teaching and learning and physical environments relations, teaching proficiency, social context, student satisfaction and immersion. The data was analyzed using Student's T-test. The results showed that ALC group, compared to the traditional classroom group, demonstrated statistically higher awareness on teaching and learning and physical environments relations, teaching proficiency, and instructor-student unofficial relations. Based on these findings, implications and limitations of this study were discussed.

An active learning method with difficulty learning mechanism for crack detection

  • Shu, Jiangpeng;Li, Jun;Zhang, Jiawei;Zhao, Weijian;Duan, Yuanfeng;Zhang, Zhicheng
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.195-206
    • /
    • 2022
  • Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.