• 제목/요약/키워드: Active Compensation of Motion Errors

검색결과 4건 처리시간 0.019초

능동제어모세관을 이용한 초정밀 유정압테이블의 5 자유도 운동 오차 보정 (Compensation of Five DOF Motion Errors in a Ultra Precision Hydrostatic Table Using the Active Controlled Capillaries)

  • 박천홍;오윤진;이후상;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.769-772
    • /
    • 2005
  • Five DOF motion errors of a hydrostatic bearing table driven by the coreless type linear motor were compensated utilizing the active controlled capillaries in this study. Horizontal linear motion and yaw error were simultaneously compensated using two active controlled capillaries and vertical linear motion, pitch and yaw error were also simultaneously compensated using three active controlled capillaries. By the compensation, horizontal linear motion accuracy and yaw were improved from 0.16 ${\mu}m$ and 1.96 arcsec to 0.02 ${\mu}m$ and 0.03 arcsec. Vertical linear motion accuracy, pitch and roll were also largely improved from 0.18 ${\mu}m$, 2.26 arcsec and 0.14 arcsec upto 0.03 ${\mu}m$, 0.07 arcsec and 0.02 arcsec. The compensated motion errors were within the range of measuring repeatability which was ${\pm}0.02\;{\mu}m$ in the linear motion and ${\pm}0.05$ arcsec in the angular motion. From these results, it is found that the motion error compensation method utilizing the active controlled capillaries are very effective to improve the five motion accuracies of the hydrostatic bearing tables.

  • PDF

자기예압 공기베어링 스테이지의 3 자유도 운동오차 측정 및 능동 보정 (Measurement and Active Compensation for 3-DOF Motion Errors of an Air Bearing Stage with Magnetic Preloads)

  • 노승국;김수현;곽윤근;박천홍
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.109-117
    • /
    • 2009
  • This paper presents a linear air bearing stage with compensated motion errors by active control of preloads generated by magnetic actuators with combination of permanent and electromagnets. A 1-axis linear stage motorized with a linear motor with 240mm of travel range is built for verifying this design concept and tested its performances. The three motions of the table are controlled with four magnetic actuators driven by current amplifiers and a DSP based digital controller. Three motion errors were measured combined method with laser interferometer and two-probe method with $0.085{\mu}m$ of repeatability for straightness error. The measured motion errors were modeled as functions of the stage position, and compensation were carried out with feedforward control because the characteristics of the motion control with magnetic actuators are linear and independent for each degree-of-freedoms. As the results, the errors were reduced from $1.09{\mu}m$ to $0.11{\mu}m$ for the vertical motion, from 9.42 sec to 0.18 sec for the pitch motion and from 2.42 sec to 0.18 sec for roll motion.

능동제어모세관을 이용한 유정압테이블의 운동정도 향상 (Improvement of Motion Accuracy Using Active Controlled Capillary in Hydrostatic Table)

  • Park, C.H.;Song, Y.C.;Lee, H.S.
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.114-120
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clearance of table is controlled corresponding to the amount of eror with the actively controlled variable capillary, named as ACC. In previous paper, through the basic test, it was confirmed that by the use of ACC, the error motion within 2.7$\mu$ m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the frequency bandwidth of 5.5Hz, structurally. In this paper, we performed practical compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy, iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error, the linear and angular motion error are improved upto 0.25$\mu$ m and 0.4arcsec, which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

  • PDF

Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.55-60
    • /
    • 2005
  • In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.