• Title/Summary/Keyword: Activators

Search Result 347, Processing Time 0.024 seconds

Recent Natural Products Involved in the Positive Modulation of Melanogenesis (Melanogenesis 양성적 조절 에 관여하는 최근 천연물의 동향)

  • Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.745-752
    • /
    • 2018
  • Melanogenesis is involved in the pigmentation of the hair, eyes, and skin in living organisms. Various signaling pathways stimulated by ${\alpha}-MSH$, SCF/c-Kit, $Wnt/{\beta}-catenin$, nitric oxide and ultraviolet activate melanocyte, leading to melanin production by tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expressed via the microphthalmia-associated transcription factor (MITF). However, the abnormal regulation of melanogenesis causes dermatological issues such as graying hair and vitiligo. Therefore, the activators that promote melanogenesis are crucial for the prevention of graying hair and the treatment of hypopigmentary disorders. Many melanogenesis stimulators have been studied for the development of novel drugs derived from synthesized compounds and natural products. Here, in addition to providing a description of a common signaling pathway in the melanogenesis of graying hair and the vitiligo process for the development of novel anti-hair graying agents, this article reviews natural herbs and the active ingredients that promote melanin synthesis as a pharmaceutical agent for the treatment of vitiligo. In particular, compounds such as Imatinib and Sugen with a stimulating effect on melanogenesis as a side effect of the drugs, are also introduced. Recent advances in research on natural plant extracts such as Polygonum multiflorum, Rhynchosia Nulubilis, Black oryzasativa, and Orysa sartiva, widely known as traditional and medicinal extracts, are also reviewed.

A Study on Antitumor Effect and Mechanism of Cortex ulmi pumilae Water Extract on HepG2 Hepatoma cell (유근피(楡根皮) 추출액(抽出液)이 HeoG2 간암세포(肝癌細胞)에 미치는 항암효과(抗癌效果) 및 기전(機轉)에 대(對)한 연구(硏究))

  • Choi, Su-Deock;Park, Young-Kweon;Kim, Gang-San;Kang, Byung-Ki;Han, Sang-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.259-266
    • /
    • 2000
  • Objectives : The effects of aqueous extracts of Cortex ulmi pumilae (a traditional medicine for cancer treatment in oriental medicine) on the induction of apoptotic cell death were investigated in human liver origm hepatoma cell lines, HepG2. Methods : The death of HepG2 cells was markedly induced by the addition of extracts of Cortex ulmi pumilae in a dose-dependent manner. The apoptotic characteristic ladder pattern of DNA strand break was not observed in cell death of HepG2. In addition, it was not shown nucleus chromatin condensation and fragmentation under hoechst staining. However, by the using annexin V staining assay, externalizations of phosphatidylserine in HepG2 cell which were treated with Cortex ulmi pumilae extracts were detected in the early time (at 9 hr after extract treatment). Furthermore, LDH release was not detected in this early stage. Therefore, Cortex ulmi pumilae extracts-induced cell death of HepG2 cells is mediated by apoptotic death signal processes. Result : The activity of caspase 3-like proteases remained in a basal level in HepG2 cells which treated with the extract of Cordyceps sinensis. However, it was markedly increased in HepG2 cells which treated with two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K) which were differently extracted (respectively, 2.3 and 3.3 fold). On a while, the phosphotransferase activities of JNK1 was markedly induced in HepG2 cells which were treated with two extracts of Cortex ulmi pumilae. On the contrary, the activation of transcriptional activator, activating protein1(AP-1) and NF-kB were severely decreased by these two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K). In addition, antioxidants (GSH and NAC) and intracellular $Ca2^+$ level regulator (Bapta/AM and Thapsigargin) did not affect Cortex ulmi pumilae extracts-induced apoptotic death of HepG2 cells. Conclusions : In conclusion, our results suggest that two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K) induces the apoptotic death of human liver origin hepatoma HepG2 cells via activation of caspase 3-like proteases as well as JNK1, and inhibition of transcriptional activators, AP-1 and $NK-{\kappa}B$.

  • PDF

The effect of cyclic AMP on the growth of Toxoplasma gondii in vitro (Cyclic AMP대사가 Toxoplasma gondii의 체외 배양에 미치는 영향)

  • 최원영;남호우
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 1990
  • To assess the role of cAMP on the growth and proliferation of Toxoplasma in HL-60 cells we tested the effect of exogenous cAMP and cAMP analogues to the co-culture system of Toxoplasma and HL-60 cells. cAMP, dbcAMP, and br-cAMP stimulated the growth of Texoplasma at a specific concentration, i.e., 100 mM, l00 mM, and 10-1 mM, respectively. There were differences in growth induction kinetics and in the rate of promotion. These results were further verified by treating the co-culture with adenylate cyclase activator, pNHppG, cAMP phosphodiesterase activators, imidasole and A23187, and cAMP phosphodiesterase inhibitors, IBMX, compound 48/80, and theophylline, separately. When the cytosolic cAMP levels increased by the reagents mentioned above, Toxoplasma in the cytoplasm of HL-60 cells stimulated to proliferate more rapidly with concentration-dependent modes compared to the control, and vice versa. It is suggested that some mechanisms are activated by the high levels of cAMP in the cytoplasm, which result in the stimulation of Toxoplasma proliferation.

  • PDF

Enhanced Expression of TREK-1 Is Related with Chronic Constriction Injury of Neuropathic Pain Mouse Model in Dorsal Root Ganglion

  • Han, Hyo Jo;Lee, Seung Wook;Kim, Gyu-Tae;Kim, Eun-Jin;Kwon, Byeonghun;Kang, Dawon;Kim, Hyun Jeong;Seo, Kwang-Suk
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.252-259
    • /
    • 2016
  • Neuropathic pain is a complex state showing increased pain response with dysfunctional inhibitory neurotransmission. The TREK family, one of the two pore domain $K^+$ (K2P) channel subgroups were focused among various mechanisms of neuropathic pain. These channels influence neuronal excitability and are thought to be related in mechano/thermosensation. However, only a little is known about the expression and role of TREK-1 and TREK-2, in neuropathic pain. It is performed to know whether TREK-1 and/or 2 are positively related in dorsal root ganglion (DRG) of a mouse neuropathic pain model, the chronic constriction injury (CCI) model. Following this purpose, Reverse Transcription Polymerase Chain Reaction (RT-PCR) and western blot analyses were performed using mouse DRG of CCI model and compared to the sham surgery group. Immunofluorescence staining of isolectin-B4 (IB4) and TREK were performed. Electrophysiological recordings of single channel currents were analyzed to obtain the information about the channel. Interactions with known TREK activators were tested to confirm the expression. While both TREK-1 and TREK-2 mRNA were significantly overexpressed in DRG of CCI mice, only TREK-1 showed significant increase (~9 fold) in western blot analysis. The TREK-1-like channel recorded in DRG neurons of the CCI mouse showed similar current-voltage relationship and conductance to TREK-1. It was easily activated by low pH solution (pH 6.3), negative pressure, and riluzole. Immunofluorescence images showed the expression of TREK-1 was stronger compared to TREK-2 on IB4 positive neurons. These results suggest that modulation of the TREK-1 channel may have beneficial analgesic effects in neuropathic pain patients.

Sodium Salicylate Activates p38MAPK Though a Specific-Sensing Mechanism, Distinct from Pathways Used by Oxidative Stress, Heat Shock, and Hyperosmotic Stress

  • Kim, Jung-Mo;Oh, Su-Young;Kim, Min-Young;Seo, Myoung-Suk;Kang, Chi-Duk;Park, Hye-Gyeong;Kang, Ho-Sung
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.241-248
    • /
    • 2003
  • Sodium salicylate, a plant stress hormone that plays an important role(s) in defenses against pathogenic microbial and herbivore attack, has been shown to induce a variety of cell responses such as anti-inflammation, cell cycle arrest and apoptosis in animal cells. p38MAPK plays a critical role(s) in the cell regulation by sodium salicylate. However, the signal pathway for sodium salicylate-induced p38MAPK activation is yet unclear. In this study, we show that although sodium salicylate enhances reactive oxygen species (ROS) production, N-acetyl-L-cysteine, a general ROS scavenger, did not prevent sodium salicylate-induced p38MAPK, indicating ROS-independent activation of p38MAPK by sodium salicylate. Sodium salicylate-activated p38MAPK appeared to be very rapidly down-regulated 2 min after removal of sodium salicylate. Interestingly, sodium salicylate-pretreated cells remained fully responsive to re-induction of p38MAPK activity by a second sodium salicylate stimulation or by other stresses, $H_2O$$_2$ and methyl jasmonate (MeJA), thereby indicating that sodium salicylate does not exhibit both homologous and heterologous desensitization. In contrast, pre-exposure to MeJA, $H_2O$$_2$, heat shock, or hyperosmotic stress reduced the responsiveness to subsequent homologous stimulation. Sodium salicylate was able to activate p38MAPK in cells desensitized by other heterologous p38MAPK activators. These results indicate that there is a sensing mechanism highly specific to sodium salicylate for activation of p38MAPK, distinct trom pathways used by other stressors such as MeJA, $H_2O$$_2$ heat shock, and hyperosmotic stress.

  • PDF

Effects of Forskolin and Cholera Toxin on the Maturation of Mouse Oocytes In Vitro (Forskolin과 Cholera Toxin이 배양중인 생쥐 난자의 성숙에 미치는 영향)

  • 김찬성;조완규
    • The Korean Journal of Zoology
    • /
    • v.29 no.3
    • /
    • pp.181-189
    • /
    • 1986
  • The present study was undertaken to investigate whether the known adenylate cyclase activators, forskolin and cholera toxin, would affect the germinal vesicle breakdown (GVBD) and the production of cAMP in mouse oocytes in vitro. To do this, in vitro oocyte culture method and adenylate cyclase assay were employed. In response to different concentrations of forskolin (20 to 80 $\\mu$g/ml) added to a culture medium, the percentage of GVBD significantly decreased (56 to 31%) in a dose-dependent manner as compared to that of control (63%). This inhibitory phenomenon by forskolin was reversible since the rate of GVBD was returned to the control level when the oocytes were transferred to a control medium following exposure to forskolin (80 $\\mu$g/ml). Treatment of cholera toxin (10 to 1, 000 ng/ml) was, however, ineffective in suppressing GVBD. When forskolin (10 to 80 $\\mu$g/ml) was added to the mouse oocyte extracts, cAMP production significantly increased by 5 to 18 fold, whereas cholera toxin (10 to 1, 000 ng/ml) was no longer effective. In addition, treatment of guanidyl-imidodiphosphate (GppNHp, 100 $\\mu$M), which is an activator of the regulatory unit of adenylate cycleas, with forskolin did not exhibit any changes in cAMP production as compared to that induced by forskolin alone. Neither cholera toxin nor cholera toxin plus GppNHp (100 $\\mu$M) exhibited any differences in mouse oocytes. From the above results, the suppression of GVBD by forskolin may be mediated by a high level of intracellular cAMP in mouse oocytes. It appears that the changes in intracellular cAMP level may an important role in the mouse oocyte maturation.

  • PDF

Tumorigenic Effects of 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin in Normal Human Skin and Lung Fibroblasts (사람의 정상 피부세포 및 폐세포의 발암에 미치는 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin의 영향)

  • Kang, Mi-Kyung;Ryeom, Tai-Kyung;Kim, Kang-Ryune;Kim, Ok-Hee;Kang, Ho-Il
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.3
    • /
    • pp.77-85
    • /
    • 2006
  • 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin(TCDD) displays high toxicity in animals and has been implicated in human carcinogenesis. Although TCDD is recognized as potent carcinogens, relatively little is known about their role in the tumor promotion and carcinogenesis. It is known that TCDD can increase of cancer risk from various types of tissue by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. In this study, effects of TCDD on cellular proliferation of normal human skin and lung fibroblasts, Detroit551 and WI38 cells were investigated. In addition, to enhance our understanding of TCDD-mediated carcinogenesis, we have investigated process in which expression of Erk1/2, cyclinD1, oncogene such as Ha-ras and c-myc, and their cognate signaling pathway. TCDD that are potent activators of AhR-mediated activity was found to induce significant increase of cytochrome P4501A1 mRNA expression, suggesting a presence of functional AhR. These results support that CYP1A1 enzyme may be involved in the generation of TCDD-induced toxicity. Moreover mitogen-activated protein kinases (MARKs) phosphorylation and cyclin D1 overexpression are induced by TCDD, which corresponded with the progression of cellular proliferation. However, TCDD did not affected Ha-ras and c-myc mRNA expression. Taken together, it seems that TCDD are could be a part of cellular proliferation in non-tumorigenic normal human cells such as Detroit551 and WI38 cells through the upregulation of MAPKs signaling pathway regulating growth of cell population. Therefore, AhR-activating TCDD could potentially contribute to tumor promotion and Detroit551 and WI38 cells have been used as a detection system of tumorigenic effects of TCDD.

  • PDF

Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers (화력발전소 매립 석탄재의 분쇄가 지오폴리머의 강도에 미치는 영향)

  • Lee, Sujeong;Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.3-11
    • /
    • 2014
  • Bottom ash from coal fired power plants is not widely used due to a broad range of particle sizes and a high carbon content for producing geopolymers. The effect of mechanical activation on compressive strength of bottom ash- based geopolymers was examined by rod and planetary-ball milling to encourage full-fledged recycling of bottom ash, the main component of pond ash. The amount of amorphous component in the milled ash samples did not change significantly after the mechanical activation. It is presumably because needle-shaped mullite crystals, which is a major crystalline phase and grown in a glassy matrix, possess high strength and toughness, and therefore, they could endure external shocks and remain almost intact. Milling operation, however, decreased the particle size and improved the homogeneity of ash, thereby leading to increase reactivity of milled ash with alkali activators. Rod milling produced a relatively narrow particle size distribution of the milled ash particles; however, it was less effective in reducing the particle size. Nevertheless, it was interesting to observe that rod milling had equal effect on improving the compressive strength of geopolymers up to about 37%, as that of planetary ball milling. Rod milling is believed to be suitable process for enhancing the reactivity of bottom ash for large-scale recycling of bottom ash and producing geopolymers.

Effect of Thymeleatoxin on Mouse Oocyte Maturation (마우스 난 성숙과정에서의 Thymeleatoxin의 영향)

  • Lim E. A.;Shin J. H.;Choi T. S.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.187-190
    • /
    • 2004
  • Protein kinase C exists as a family of serine/threonine kinases which are broadly classified into three groups as cPKC nPKC and aPKC depending on their cofactor requirements. Previous studies have shown that the role of PKC in the process of mouse oocyte maturation. For example, phorbol 12-myristate 13-acetate which is known as an activator of cPKC and nPKC inhibits germinal vesicle break down and 1st polar body extrusion in maturing oocytes. In this study, the effect of thymeleatoxin, a specific activator of cPKC not nPKC, was tested comparing with PMA to address the roles of cPKC and nPKC during mouse oocyte maturation. Cumulus-oocyte complex were cultured in M16 medium for 6 or 12 hr with each of these PKC activators to investigate the effect of germinal vesicle breakdown (GVBD) or the extrusion of 1st polar body. IC/sup 50/ of GVBD were at concentrations of 50nM in PMA and 400nM in thymeleatoxin and of 1st polar body extrusion were 20nM in PMA and 200nM in thy- meleatoxin. The results suggest that activation of nPKC is more closely related to the inhibition of GVBD and 1st polar body extrusion than activation of cPKC. Additionally, we found that the oocytes inhibited 1st polar body extrusion with PMA or thymeleatoxin were arrested in metaphase I of first meiosis.

Relationship between In Vitro Maturation and Plasminogen Activator Activity on Porcine Cumulus-Oocytes Complexes Exposed to Oxidative Stress

  • Sa, Soo-Jin;Park, Chun-Keun;Cheong, Hee-Tae;Son, Jung-Ho;Kim, Myung-Jick;Cho, Kyu-Ho;Kim, Du-Wan;So, Kyoung-Min;Kim, In-Cheul
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • This study was undertaken to evaluate the relationship between in vitro maturation and plasminogen activators (PAs) activity on porcine cumulus-oocytes complexes (COCs) exposed to oxidative stress. When COCs were cultured in maturation medium with hydrogen peroxide ($H_2O_2$), the proportion of the germinal vesicle breakdown (GVBD) and oocytes maturation were decrease with addition of $H_2O_2$, and were significantly (p<0.05) lower in medium with 0.1 mM $H_2O_2$ than control group. Also, the rate of degenerated oocytes was increased in as $H_2O_2$ concentration in eased. When COCs were cultured for 48 h, three plasminogen-dependent lytic bands were observed: tissue-type PA (tPA); urokinase-type PA (uPA); and tPA-PA inhibitor (tPA-PAI). PA activity was quantified using SDS-PAGE and zymography. When $H_2O_2$ concentration was increased, tPA and tPA-PAI activities also increased in porcine oocytes cultured for 48 h, but not uPA. In other experiment, embryos were divided into three groups and cultured in (1) control medium, (2) control medium with 1.0 mM $H_2O_2$ and (3) control medium with 1.0 mM $H_2O_2$ along with catalase in concentrations of 0.01, 0.1, and 1.0 mg/ml, respectively. $H_2O_2$ decreased the rate of GVBD and maturation in porcine COCs but catalase revealed protective activity, against oxidative stress caused by $H_2O_2$. In this experiment, tPA and tPA-PAI activities were higher in media with 1.0 mM $H_2O_2$ alone. Increasing concentration of catalase decreased tPA and tPA-PAI activities in porcine oocytes. These results indicate that the exposure of porcine follicular oocytes to ROS inhibits oocytes maturation to metaphase-II stage and increase the oocytes degeneration. Also, we speculated that increased ROS level may trigger tPA and tPA-PAI activities in porcine oocytes matured in vitro.