Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.6.745

Recent Natural Products Involved in the Positive Modulation of Melanogenesis  

Kim, Moon-Moo (Department of Applied Chemistry, Dong-Eui University)
Publication Information
Journal of Life Science / v.28, no.6, 2018 , pp. 745-752 More about this Journal
Abstract
Melanogenesis is involved in the pigmentation of the hair, eyes, and skin in living organisms. Various signaling pathways stimulated by ${\alpha}-MSH$, SCF/c-Kit, $Wnt/{\beta}-catenin$, nitric oxide and ultraviolet activate melanocyte, leading to melanin production by tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expressed via the microphthalmia-associated transcription factor (MITF). However, the abnormal regulation of melanogenesis causes dermatological issues such as graying hair and vitiligo. Therefore, the activators that promote melanogenesis are crucial for the prevention of graying hair and the treatment of hypopigmentary disorders. Many melanogenesis stimulators have been studied for the development of novel drugs derived from synthesized compounds and natural products. Here, in addition to providing a description of a common signaling pathway in the melanogenesis of graying hair and the vitiligo process for the development of novel anti-hair graying agents, this article reviews natural herbs and the active ingredients that promote melanin synthesis as a pharmaceutical agent for the treatment of vitiligo. In particular, compounds such as Imatinib and Sugen with a stimulating effect on melanogenesis as a side effect of the drugs, are also introduced. Recent advances in research on natural plant extracts such as Polygonum multiflorum, Rhynchosia Nulubilis, Black oryzasativa, and Orysa sartiva, widely known as traditional and medicinal extracts, are also reviewed.
Keywords
MITF (microphthalmia-associated transcription factor); melanogenesis; tyrosinase; tyrosinase-related protein (TRP)-1; TRP-2;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Di Tullio, F., Mandel, V. D., Scotti, R., Padalino, C. and Pellacani, G. 2018. Imatinib-induced diffuse hyperpigmentation of the oral mucosa, the skin, and the nails in a patient affected by chronic myeloid leukemia: report of a case and review of the literature. Int. J. Dermatol. 1, 1-7.
2 Dolinska, M. B., Kus, N. J., Farney, S. K., Wingfield, P. T., Brooks, B. P. and Sergeev, Y. V. 2017. Oculocutaneous albinism type 1: link between mutations, tyrosinase conformational stability, and enzymatic activity. Pigment Cell Melanoma Res. 30, 41-52.   DOI
3 Hu, C., Zawistowski, J., Ling, W. and Kitts, D. D. 2003. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agric. Food Chem. 51, 5271-5277.   DOI
4 Ide, T., Iwase, H., Amano, S., Sunahara, S., Tachihara, A., Yagi, M. and Watanabe, T. 2017. Physiological effects of ${\gamma}$-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation. J. Nutr. Biochem. 41, 42-55.   DOI
5 Jeon, S. and Kim, M. M. 2017. Black sesame ethanolic extract promotes melanin synthesis. J. Life Sci. 27, 1452-1461.
6 Chiang, H. M., Lin, J. W., Hsiao, P. L., Tsai, S. Y. and Wen, K. C. 2011. Hydrolysates of citrus plants stimulate melanogenesis protecting against UV-induced dermal damage. Phytother. Res. 25, 569-576.   DOI
7 Wood, J. M., Decker, H., Hartmann, H., Chavan, B., Rokos, H., Spencer, J., Hasse, S., Thornton, M. J., Shalbaf, M. and Paus, R. 2009. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 23, 2065-2075.   DOI
8 Xu, P., Su, S., Tan, C., Lai, R. S. and Min, Z. S. 2017. Effects of aqueous extracts of Ecliptae herba, Polygoni multiflori radix praeparata and Rehmanniae radix praeparata on melanogenesis and the migration of human melanocytes. J. Ethnopharmacol. 195, 89-95.   DOI
9 Tian, H. and Guo, R. 2017. Cardioprotective potential of sesamol against ischemia/reperfusion injury induced oxidative myocardial damage. Biomed. Res. 28. 2156-2163.
10 Jeon, S., Kim, N. H., Koo, B. S., Kim, J. Y. and Lee, A. Y. 2009. Lotus (Nelumbo nuficera) flower essential oil increased melanogenesis in normal human melanocytes. Exp. Mol. Med. 41, 517.   DOI
11 Jin, M. L., Park, S. Y., Kim, Y. H., Park, G., Son, H. J. and Lee, S. J. 2012. Suppression of ${\alpha}$-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int. J. Mol. Med. 29, 119-124.
12 Lai, X., Wichers, H. J., Soler-Lopez, M. and Dijkstra, B. W. 2018. Structure and function of human tyrosinase and tyrosinase-related proteins. Chemistry 24, 47-55.   DOI
13 Abbe, P., Mantoux, F., Aberdam, E., Peyssonnaux, C., Eychene, A., Ortonne, J. P. and Ballotti, R. 2000. Ras mediates the cAMP-dependent activation of extracellular signalregulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900-2910.   DOI
14 Kim, H. and Kim, M. M. 2017. Promotive effect of Polygonum multiflorum radix ethanol extract on melanogenesis. J. Life Sci. 27, 423-429.   DOI
15 Kim, J. and Kim, M. M. 2018. Effect of Rhynchosia nulubilis ethanolic extract on DOPA oxidation and melaninsynthesis. J. Life Sci. 28, 331-338.
16 Kwon, E. J. and Kim, M. M. 2017. Agmatine modulates melanogenesis via MITF signaling pathway. Environ. Toxicol. Pharmacol. 49, 124-130.   DOI
17 Lai, X., Wichers, H. J., Soler-Lopez, M. and Dijkstra, B. W. 2017. Structure of human tyrosinase related Protein 1 reveals a binuclear zinc active site important for melanogenesis. Angew. Chem. 129, 9944-9947.   DOI
18 Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., Yang, W. nL., Wang, J., Egia, A. and Nakayama, K. I. 2010. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374-379.   DOI
19 Lopez-Tejedor, D. and Palomo, J. M. 2018. Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus. Protein Expr. Purif. 145, 64-70.   DOI
20 Yin, L., Pang, G., Niu, C., Habasi, M., Dou, J. and Aisa, H. A. 2018. A novel psoralen derivative-MPFC enhances melanogenesis via activation of p38 MAPK and PKA signaling pathways in B16 cells. Int. J. Mol. Med. 41, 3727-3735.
21 Yoshida, M., Takahashi, Y. and Inoue, S. 2000. Histamine induces melanogenesis and morphologic changes by protein kinase A activation via H2 receptors in human normal melanocytes. J. Invest. Dermatol. 114, 334-342.   DOI
22 Zaidi, K., Ali, S., Ali, A. and Thawani, V. 2017. Natural melanogenesis stimulator a potential tool for the treatment of hypopigmentation disease. Int. J. Mol. Biol. Open Access 2, 00012.
23 Olivares, C. and Solano, F. 2009. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 22, 750-760.   DOI
24 Zhou, J., Shang, J., Ping, F. and Zhao, G. 2012. Alcohol extract from Vernonia anthelmintica (L.) willd seed enhances melanin synthesis through activation of the p38 MAPK signaling pathway in B16F10 cells and primary melanocytes. J. Ethnopharmacol. 143, 639-647.   DOI
25 Matamá, T., Gomes, A. C. and Cavaco-Paulo, A. 2015. Hair coloration by gene regulation: fact or fiction? Trends Biotechnol. 33, 707-711.   DOI
26 Miyazono, K., Maeda, S. and Imamura, T. 2005. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16, 251-263.   DOI
27 Na, M., Park, J., An, R., Lee, S., Kim, Y., Lee, J., Seong, R., Lee, K. and Bae, K. 2000. Quality evaluation of Polygoni Multiflori radix. Kor. J. Pharmacogn. 31, 335-339.
28 Nawaz, A. 2017. Tyrosinase: sources, structure and applications. Int. J. Biotech. Bioeng. 3, 135-141.
29 Perez-Sanchez, A., Barrajon-Catalan, E., Herranz-Lopez, M., Castillo, J. and Micol, V. 2016. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model. J. Dermatol. Sci. 84, 169-177.   DOI
30 Pillaiyar, T., Manickam, M. and Namasivayam, V. 2017. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 32, 403-425.   DOI
31 Pretzler, M., Bijelic, A. and Rompel, A. 2017. Heterologous expression and characterization of functional mushroom tyrosinase (Ab PPO4). Sci. Rep. 7, 1810.   DOI
32 Lopez-Bergami, P. 2011. The role of mitogen-and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res. 24, 902-921.   DOI
33 Skandrani, I., Pinon, A., Simon, A., Ghedira, K. and Chekir-Ghedira, L. 2010. Chloroform extract from Moricandia arvensis inhibits growth of B16-F0 melanoma cells and promotes differentiation in vitro. Cell Prolif. 43, 471-479.   DOI
34 Sajid, M. and Ali, S. A. 2011. Mediation of cholino-piperine like receptors by extracts of Piper nigrum induces melanin dispersion in Rana tigerina tadpole melanophores. J. Recept. Signal Transduct. Res. 31, 286-290.   DOI
35 Schlessinger, D. I. and James, W. D. 2017. Biochemistry, Melanin, StatPearls [Internet].
36 Seiberg, M. 2013. Age-induced hair greying-the multiple effects of oxidative stress. Int. J. Cosmet. Sci. 35, 532-538.   DOI
37 Seo, H., Seo, G. Y., Ko, S. Z. and Park, Y. H. 2011. Inhibitory effects of ethanol extracts from Polygoni multiflori radix and Cynanchi wilfordii radix on melanogenesis in melanoma cells. J. Kor. Soc. Food. Sci. Nutr. 40, 1086-1091.   DOI
38 Singh, S. K., Abbas, W. A. and Tobin, D. J. 2012. Bone morphogenetic proteins differentially regulate pigmentation in human skin cells. J. Cell Sci. 125, 4306-4319.   DOI
39 Solano, F. 2018. On the metal cofactor in the tyrosinase family. Int. J. Mol. Sci. 19, 633.   DOI
40 Speeckaert, R. and van Geel, N. 2018. Melanocyte and melanogenesis: applied anatomy and physiology. Vitiligo: Medical and Surgical Managmement, 9.
41 Ali, S. A., Sultan, T., Galgut, J. M., Sharma, R., Meitei, K. V. and Ali, A. S. 2011. In vitro responses of fish melanophores to lyophilized extracts of Psoralea corylifolia seeds and pure psoralen. Pharm. Biol. 49, 422-427.   DOI
42 Abdel-Malek, Z. A., Swope, V. B. and Indra, A. 2017. Revisiting Epidermal Melanocytes: Regulation of Their Survival, Proliferation, and Function in Human Skin.7-38. Melanoma Development: Springer.
43 Alexandrescu, D. T., Dasanu, C. A., Farzanmehr, H. and Kauffman, C. L. 2008. Persistent cutaneous hyperpigmentation after tyrosine kinase inhibition with imatinib for GIST. Dermatol. Online J. 14, 7.
44 Ali, S. A. and Meitei, K. V. 2011. Nigella sativa seed extract and its bioactive compound thymoquinone: the new melanogens causing hyperpigmentation in the wall lizard melanophores. J. Pharm. Pharmacol. 63, 741-746.   DOI
45 Campisi, J. 2005. Suppressing cancer: the importance of being senescent. Science 309, 886-887.   DOI
46 Tenyang, N., Ponka, R., Tiencheu, B., Djikeng, F. T., Azmeera, T., Karuna, M. S., Prasad, R. B. and Womeni, H. M. 2017. Effects of boiling and roasting on proximate composition, lipid oxidation, fatty acid profile and mineral content of two sesame varieties commercialized and consumed in Far-North Region of Cameroon. Food Chem. 221, 1308-1316.   DOI
47 Thang, N. D., Diep, P. N., Lien, P. T. H. and Lien, L. T. 2017. Polygonum multiflorum root extract as a potential candidate for treatment of early graying hair. J. Adv. Pharm. Technol. Res. 8, 8.   DOI
48 Babitha, S., Shin, J. H., Nguyen, D. H., Park, S. J., Reyes, G. A., Caburian, A. and Kim, E. K. 2011. A stimulatory effect of Cassia occidentalis on melanoblast differentiation and migration. Arch. Dermatol. Res. 303, 211-216.   DOI
49 Bae, G. J. and Ha, B. J. 2015. Antioxidative effect of fermented Rhynchosia nulubilis in obese rats. J. Food Hyg. Saf. 30, 383-389.   DOI
50 Birla, D. S., Malik, K., Sainger, M., Chaudhary, D., Jaiwal, R. and Jaiwal, P. K. 2017. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Crit. Rev. Food Sci. Nutr. 57, 2455-2481.   DOI
51 Chaabane, F., Mustapha, N., Mokdad-Bzeouich, I., Sassi, A., Kilani-Jaziri, S., Franca, M. G. D., Michalet, S., Fathallah, M., Krifa, M. and Ghedira, K. 2016. In vitro and in vivo anti-melanoma effects of Daphne gnidium aqueous extract via activation of the immune system. Tumor Biol. 37, 6511-6517.   DOI
52 Videira, I. F. d. S., Moura, D. F. L. and Magina, S. 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 88, 76-83.   DOI
53 D'Mello, S. A., Finlay, G. J., Baguley, B. C. and Askarian-Amiri, M. E. 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17, 1144.   DOI
54 Decker, H. and Tuczek, F. 2017. The recent crystal structure of human tyrosinase related protein 1 (HsTYRP1) solves an old problem and poses a new one. Angew Chem. Int. Ed. Engl. 56, 14352-14354.   DOI
55 Tobin, D. and Paus, R. 2001. Graying: gerontobiology of the hair follicle pigmentary unit. Exp. Gerontol. 36, 29-54.   DOI
56 Tobin, D. J., Hagen, E., Botchkarev, V. A. and Paus, R. 1998. Do hair bulb melanocytes undergo apotosis during hair follicle regression (catagen)? J. Invest. Dermatol. 111, 941-947.   DOI
57 Van Neste, D. and Tobin, D. J. 2004. Hair cycle and hair pigmentation: dynamic interactions and changes associated with aging. Micron 35, 193-200.   DOI
58 Vogt, L., Laverman, G. D., de Zeeuw, D. and Navis, G. 2003. Tyrosine kinase inhibition and grey hair. Lancet 361, 1056.
59 Wan, P., Hu, Y. and He, L. 2011. Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors. Mol. Cell. Biochem. 354, 241-246.   DOI
60 Weston, C. R. and Davis, R. J. 2007. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142-149.   DOI