• Title/Summary/Keyword: Activation factor

Search Result 2,338, Processing Time 0.032 seconds

Antineuroinflammatory Effects of 7,3',4'-Trihydroxyisoflavone in Lipopolysaccharide-Stimulated BV2 Microglial Cells through MAPK and NF-κB Signaling Suppression

  • Kim, Seon-Kyung;Ko, Yong-Hyun;Lee, Youyoung;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • Neuroinflammation―a common pathological feature of neurodegenerative disorders such as Alzheimer's disease―is mediated by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3',4'-Trihydroxyisoflavone (THIF)―a secondary metabolite of the soybean compound daidzein―possesses antioxidant and anticancer properties. However, the effects of 7,3',4'-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects of 7,3',4'-THIF in lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined. 7,3',4'-THIF significantly suppressed the production of the proinflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) as well as of the proinflammatory cytokine interleukin-6 (IL-6) in LPS-stimulated BV2 microglial cells. Moreover, 7,3',4'-THIF markedly inhibited reactive oxygen species (ROS) generation. Western blotting revealed that 7,3',4'-THIF diminished LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β), and nuclear factor kappa B (NF-κB). Overall, 7,3',4'-THIF exerts antineuroinflammatory effects against LPS-induced microglial activation by suppressing mitogen-activated protein kinase (MAPK) and NF-κB signaling, ultimately reducing proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3',4'-THIF suggest its potential as a therapeutic agent for neurodegenerative disorders.

Red ginseng extract inhibits lipopolysaccharide-induced platelet-leukocyte aggregates in mice

  • Yuan Yee Lee;Sung Dae Kim;Jin-Kyu Park;Won-Jae Lee;Jee Eun Han;Min-Soo Seo;Min-Goo Seo;Seulgi Bae;Dongmi Kwak;Evelyn Saba;Man Hee Rhee
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.428-434
    • /
    • 2024
  • Background: Platelet-leukocyte aggregates (PLAs) play important roles in cardiovascular disease and sepsis. Red ginseng extract (RGE) has been well-studied for its antiplatelet and anti-inflammatory activities. However, the potential inhibitory effects of RGE on PLA have not been investigated. Methods: Six-week-old ICR mice were given oral gavage of RGE for 7 days, followed by an intraperitoneal injection of 15 mg/kg of lipopolysaccharide. Mice were euthanized 24 h later, and blood samples were collected for further analysis. Flow cytometry was utilized to sort populations of PLAs and platelet-neutrophil aggregates (PNAs). By using confocal microscopy, PNAs were validated. Morphological changes in platelets and leukocytes were visualized with scanning electron microscopy. Expressions of tissue factor (TF) and platelet factor 4 (PF4) were investigated using enzyme-linked immunosorbent assay. Results: Populations of activated platelets, PLAs and PNAs, were significantly increased with LPS-induction. Treatment with 200 and 400 mg/kg of RGE decreased platelet activation. Moreover, the populations of PLAs and PNAs were reduced. PNAs were visible in the blood of septic mice, and this was attenuated by treatment with 400 mg/kg of RGE. Morphologically, sepsisinduced platelet activation and fibrin formation in the blood. This was reduced with RGE treatment. Sepsis-induced increase in the plasma levels of TF and PF4 was also reduced with RGE treatment. Conclusion: This study shows that RGE is a potential therapeutic that reduces the activation of platelets and targets PLA and PNA formation. Detailed inhibitory mechanisms of RGE should be studied.

INHIBITORY EFFECT OF ALPHA-LIPOIC ACID ON MITOCHONDRIAL DYSFUNCTION AND INTERLEUKIN-8 EXPRESSION IN INTERLEUKIN-1BETA-STIMULATED ATAXIA TELANGIECTASIA FIBROBLASTS

  • J. YOON;H. LEE;J.W. LIM;H. KIM
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.71 no.1
    • /
    • pp.155-165
    • /
    • 2020
  • Ataxia telangiectasia (A-T) is an inherited neurodegenerative disease caused by mutation in the ataxia telangiectasia mutated (ATM) gene, leading to loss of function in the encoded protein ATM. Because ATM functions to reduce oxidative stress by up-regulating antioxidant enzymes, oxidative stress is a prevalent A-T phenotype and a mediator of the inflammation that drives A-T pathology. Reactive oxygen species (ROS) levels and the expression of pro-inflammatory cytokine interleukin-8 (IL-8) were higher in A-T cells than in normal cells. ROS are related to mitochondrial dysfunction and activation of nuclear factor kappa B (NF-κB) to induce IL-8 expression. Alpha-lipoic acid (α-LA), a naturally occurring thiol compound, shows an antioxidant effect in various cells. This study is aimed to determine if α-LA confers protection against NF-κB activation, IL-8 expression, and mitochondrial dysfunction in A-T cells which are exposed to the inflammatory cytokine IL-1β. A-T fibroblasts were treated with or without α-LA. The levels of intracellular and mitochondrial ROS, mRNA and protein levels of IL-8, mitochondrial membrane potential (MMP), ATP levels, and DNA binding activity of NF-κB were determined. As a result, IL-1β increased NF-κB activation, IL-8 expression, intracellular and mitochondrial ROS levels, but decreased MMP and ATP level in A-T cells. Pretreatment of A-T cells with α-LA inhibited IL-1β-induced activation of NF-κB, IL-8 expression, and mitochondrial dysfunction by reducing ROS levels. In conclusion, supplementation with α-LA may be beneficial for reducing the oxidative stress-induced mitochondrial dysfunction and IL-8 production associated with A-T.

Effects of Glucose Degradation Products on Human Peritoneal Mesothelial Cells (포도당분해산물이 사람 복막중피세포 활성화에 미치는 영향)

  • Song, Jae-Sook;Lee, Kyung-Lim;Ha, Hunjoo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.308-314
    • /
    • 2005
  • Both high glucose and glucose degradation products (GDP) have been implicated in alterations of peritoneal membrane structure and function during long-term peritoneal dialysis (PD). The present study examined the role of GDP including methylglyoxal (MGO), acetaldehyde, and 3,4-dideoxyglucosone (3,4-DGE) in HPMC activation with respect to membrane hyperpermeability or fibrosis. The role of reactive oxygen species (ROS) and activation of protein kinase C (PKC) in GDP-induced HPMC activation were also examined. Using M199 culture medium as control, growth arrested and synchronized HPMC were continuously stimulated by MGO, acetaldehyde, and 3,4-DGE for 48 hours. Vascular endothelial growth factor (VEGF) was quantified as a marker of peritoneal membrane hyperpermeability and fibronectin and heat shock protein 47 (hsp47) as markers of fibrosis. Involvement of ROS and PKC was examined by the inhibitory effect of N-acetylcystein (NAC) or calphostin C, respectively. MGO significantly increased VEGF (1.9-fold), fibronectin (1.5-fold), and hsp47 (1.3-fold) secretion compared with control M199. NAC and calphostin C effectively inhibited MGO-induced VEGF upregulation. Acetaldehyde stimulated and 3,4-DGE inhibited VEGF secretion. Fibronectin secretion and hsp47 expression in HPMC were not affected by acetaldehyde or 3,4-DGE In conclusion, MGO upregulated VEGF and fibronectin secretion and hsp47 expression in HPMC, and PKC as well as ROS mediate MGO-induced VEGF secretion by HPMC. This implies that PKC activation and ROS generation by GDP may constitute important signals for activation of HPMC leading to progressive membrane hyperpermeability and accumulation of extracellular matrix and eventual peritoneal fibrosis.

Trans-10, cis-12 Conjugated Linoleic Acid Modulates Tumor Necrosis Factor-${\alpha}$ Production and Nuclear Factor-${\kappa}B$ Activation in RAW 264.7 Macrophages Through Formation of Reactive Oxygen Species (RAW 264.7 세포에 있어 t10c12-CLA의 ROS를 통한 TNF-${\alpha}$ 생산 및 NF-${\kappa}B$ 활성 조절)

  • Park, So-Young;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.469-476
    • /
    • 2014
  • The aims of this study were to explore the effects of conjugated linoleic acid (CLA) on reactive oxygen species (ROS) production in lipopolysaccharide (LPS)-naïve and LPS-stimulated RAW 264.7 macrophages and to examine whether these effects affect the regulation of tumor necrosis factor-alpha (TNF-${\alpha}$) production, and nuclear factor-kappa B (NF-${\kappa}B$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) activation. Trans-10, cis-12(t10c12)-CLA increased the production of ROS, as well as TNF-${\alpha}$ in LPS-naïve RAW 264.7 cells. The CLA-induced TNF-${\alpha}$ production was suppressed by treatment of diphenyleneiodonium chloride (DPI), a NADPH oxidase inhibitor. In addition, CLA enhanced the activities of NF-${\kappa}B$ and $PPAR{\gamma}$ in LPS-naïve RAW 264.7 cells, and this effect was abolished with DPI treatment. LPS treatment increased ROS production, whereas CLA reduced LPS-induced ROS production. LPS increased both TNF-${\alpha}$ production and NF-${\kappa}B$ activity, whereas t10c12-CLA reduced TNF-${\alpha}$ production and NF-${\kappa}B$ activity in LPS-stimulated RAW 264.7 cells. DPI treatment suppressed LPS-induced ROS production and NF-${\kappa}B$ activity. Moreover, DPI enhanced the inhibitory effects of t10c12-CLA on TNF-${\alpha}$ production and NF-${\kappa}B$ activation in LPS-stimulated RAW 264.7 cells. However, neither t10c12-CLA nor DPI affected $PPAR{\gamma}$ activity in LPS-stimulated RAW 264.7 cells. Taken together, these data indicate that t10c12-CLA induces TNF-${\alpha}$ production by increasing ROS production in LPS-naïve RAW 264.7 cells, which is mediated by the enhancement of NF-${\kappa}B$ activity via $PPAR{\gamma}$ activation. By contrast, t10c12-CLA suppresses TNF-${\alpha}$ production by inhibiting ROS production and NF-${\kappa}B$ activation via a $PPAR{\gamma}$-independent pathway in LPS-stimulated RAW 264.7 cells. These results suggest that t10c12-CLA can modulate TNF-${\alpha}$ production and NF-${\kappa}B$ activation through formation of ROS in RAW 264.7 macrophages.

Long-term Activation of c-Jun N-terminal Kinase through Receptor Interacting Protein is Associated with DNA Damage-induced Cell Death

  • Seok, Jeong-Ho;Park, Kyeong-Ah;Byun, Hee-Sun;Won, Min-Ho;Shin, Sang-Hee;Choi, Byung-Lyul;Lee, Hyun-Ji;Kim, Young-Rae;Hong, Jang-Hee;Park, Jong-Sun;Hur, Gang-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.185-191
    • /
    • 2008
  • Activation of c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is an important cellular response that modulates the outcome of the cells which are exposed to the tumor necrosis factor (TNF) or the genotoxic stress including DNA damaging agents. Although it is known that JNK is activated in response to genotoxic stress, neither the pathways to transduce signals to activate JNK nor the primary sensors of the cells that trigger the stress response have been identified. Here, we report that the receptor interacting protein (RIP), a key adaptor protein of TNF signaling, was required to activate JNK in the cells treated with certain DNA damaging agents such as adriamycin (Adr) and 1-${\beta}$-D-arabinofuranosylcytosine (Ara-C) that cause slow and sustained activation, but it was not required when treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and short wavelength UV, which causes quick and transient activation. Our findings revealed that this sustained JNK activation was not mediated by the TNF (tumor necrosis factor) receptor signaling, but it required a functional ATM (ataxia telangiectasia) activity. In addition, JNK inhibitor SP-600125 significantly blocked the Adr-induced cell death, but it did not affect the cell death induced by MNNG. These findings suggest that the sustained activation of JNK mediated by RIP plays an important role in the DNA damage-induced cell death, and that the duration of JNK activation relays a different stress response to determine the cell fate.

NMDA (n-methyl-d-aspartate) Change Expression Level of Transcription Factors (Egr-1, c-jun, Junb, Fosb) mRNA in the Cerebellum Tissue of Balb/c Mouse (NMDA투여에 의한 transcription factor (Egr-1, C-Jun, JunB, FosB)의 발현 변화 양상)

  • Ha, Jong-Su;Kim, Jae-Wha;Song, Jae-Chan
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1043-1050
    • /
    • 2015
  • Glutamate is one of the principle transmitters in the CNS. Ionotropic receptors of glutamate, selectively activated by N-methyl-D-aspartate (NMDA), play an important role in the processes of cell development, learning, memory, and etc. On the other hand, many studies discovered that over-activation of glutamate receptors leads to neurodegeneration and are known to be implicated in major areas of brain pathology. Any sustained effect of a transient NMDA receptor activation is likely to involve signaling to the nucleus and to trigger coordinated changes in gene expression. Classically, a set of immediate-early genes are induced first; some of genes are by themselves transcription factors that control expression of other target genes. This study provides understanding of changes of inducible transcription factors mRNA levels with RT-PCR by inducing over-activation of NMDA receptor with intraperitoneal NMDA injection. The experimental conditions were varied by 1, 5, 25, and 125 g/ of body weight NMDA and measured transcription factors mRNA levels are Egr-1, c-Jun, JunB, and FosB. Based on result obtained, inducible transcription factors mRNA in NMDA injection to mice with 5 g/body weight showed the greatest change. And ITF mRNA showed greatest change 24 hr after injection. The expression level of JunB mRNA was markedly changed. Up to the present days, no study clearly understood how ITF mRNA affected the apoptosis of purkinje cells in the cerebellum. The current study improves the understanding of the mechanism of apoptosis of purkinje cells in the cerebellum.

Streptochlorin, a Marine Natural Product, Inhibits $NF-{\kappa}B$ Activation and Suppresses Angiogenesis In Vitro

  • Choi, In-Kwon;Shin, Hee-Jae;Lee, Hyi-Seung;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1338-1343
    • /
    • 2007
  • Angiogenesis is an essential step in tumor progress and metastasis. Accordingly, small molecules that inhibit angiogenesis would appear to be a promising way to cure angiogenesis-related diseases, including cancer. In the present study, we report that streptochlorin, a small molecule from marine actinomycete, exhibits a potent antiangiogenic activity. The compound potently inhibited endothelial cell invasion and tube formation stimulated with vascular endothelial cell growth factor (VEGF) at low micromolar concentrations where it showed no cytotoxicity to the cells. In addition, streptochlorin inhibited TNF-${\alpha}$-induced $NF-{\kappa}B$ activation in the newly developed cell-based reporter gene assay. These data demonstrate that streptochlorin is a new inhibitor of $NF-{\kappa}B$ activation and can be a basis for the development of novel anti-angiogenic agents.

VE Adaptability and Activation plan in Design Phase of BTL Projects (민간투자(BTL)사업의 설계VE 적용 및 활성화 방안 연구)

  • Shin, Jeong-Hoon;Sim, Un-Jun;Lee, Taick-Oun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.93-99
    • /
    • 2007
  • Highly advanced technologies are being adopted into the domestic construction industry in accordance with rapidly changing global construction industry in the 21st century. Value Engineering methodologies have often been discussed but not yet settled in the country. This research, therefore, aims to provide a useful guide to utilizing design Value Engineering in Build Transfer Lease. 1. Questionnaires had been conducted, answered by those in the field. 2. Questionnaires were in regard to the obstacles in the application of design Value Engineering and activation schemes. 3. Five standards were provided to be chosen according to the degree of influence from each factor, whose answers were technically analyzed by a statistical program afterward. 4. Four obstacles classified in this method were approached systematically to analyze the problems. 5. Efficient Activation schemes have been suggested after various analyses in a variety of aspects.

Cyclooxygenase-2 as a Molecular Target for Cancer Chemopreventive Agents

  • Surh, Young-Joon
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.89-96
    • /
    • 2001
  • Recently, considerable attention has been focused on the role of cyclooxygenase-2 (COX-2) in the carcinogenesis as well as in inflammation. Improperly overexpressed COX-2 has been observed in many types of human cancers and transformed cells in culture. Thus, it is conceivable that targeted inhibition of abnormally or improperly up-regulated COX-2 provides one of the most effective and promising strategies for cancer prevention. A ubiquitous eukaryotic transcription factor, NF-kB is considered to be involved in regulation of COX-2 expression. Furthermore, extracellular-regulated protein kinase and p38 mitogen-activated protein (MAP) kinase appear to be key elements of the intracellular signaling cascades involved in NF-kB activation in response to a wide array of external stimuli. Certain chemopreventive phytochemicals suppress activation of NF-kB by blocking one or more of the MAP kinases, which may contribute to their inhibitory effects on COX-2 induction. One of the plausible mechanisms by which chemopreventive phytochemicals inhibit NF-kB activation involves suppression of degradation of the inhibitory unit I kB, which hampers subsequent translocation of p65, the functionally active subunit of NF-kB.

  • PDF