• 제목/요약/키워드: Activated-carbon treatment

검색결과 654건 처리시간 0.023초

정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교 (Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon)

  • 이철호;박나영;김고운;전종기
    • 공업화학
    • /
    • 제27권1호
    • /
    • pp.62-67
    • /
    • 2016
  • 본 연구에서는 정수슬러지를 원료로 사용하여 펠렛형 흡착제를 제조하고 질소흡착법, XRD, XRF 및 암모니아 승온탈착법 등을 사용하여 물리 화학적 특성을 분석하였다. 정수슬러지 유래 펠렛형 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체의 흡착 성능을 비교하였다. 정수슬러지로부터 제조된 펠렛형 흡착제는 첨착활성탄보다 표면적과 기공부피는 훨씬 작지만 암모니아를 훨씬 더 많이 흡착할 수 있었다. 이는 정수슬러지로부터 제조된 펠렛형 흡착제 표면에 산점이 훨씬 더 많이 분포해 있어서 화학흡착에 의해 암모니아를 흡착하기 때문이다. 반면에, 산성가스인 포름알데히드 가스 흡착의 경우는 넓은 표면적과 발달된 기공으로 인하여 첨착활성탄의 흡착성능이 정수슬러지로부터 제조된 펠렛형 흡착제에 비해 훨씬 우수하였다.

Silver elimination effect by sulfuric acid for Ag pre-treated activated carbon

  • Oh, Won-Chun
    • 분석과학
    • /
    • 제19권2호
    • /
    • pp.121-130
    • /
    • 2006
  • In this study, silver pre-treated activated carbons are transformed using sulfuric acid. From the results of adsorption, each isotherm shows a distinct knee band, which is characteristic of microporous adsorbents with capillary condensation in micropores. In order to reveal the causes of the differences in adsorption capacity and specific surface area after the samples were washed with various strengths of sulfuric acid, surface morphology and external pore structure were investigated by SEM. X-ray diffraction patterns indicated that Ag-activated carbons show better performance for silver and silver compounds removal by post-treatment with acid. The FT-IR spectra of silver-activated carbon samples show that the acid post-treatment was consequently associated with the removal of silver with an increased surface functional group containing oxygen of the activated carbon. The type and quality of oxygen groups are determined on the method proposed by Boehm. For the chemical composition microanalysis of silver-activated carbons transformed by post-treatment with sulfuric acid, samples were analyzed by EDX.

세정 활성탄의 흡착특성 (Adsorption Properties of Demineralized Activated Carbon)

  • 김정열;신창호;서문원;김영호;이근희;지상운
    • 한국연초학회지
    • /
    • 제18권1호
    • /
    • pp.85-91
    • /
    • 1996
  • Commercially available activated carbon was treated with 0.2N NaOH/0.1N HCl to decrease the ash contents and to analyze the effect of demineralization. We have studied their properties and adsorptivity to solvents such as benzene, acetone, toluene and carbon tetrachloride, ammonia and also aldehydes of cigarette smoke. By demineralization with NaOH/HCl, surface area and pore volume were increased up to 10 - 20% according to developement of micro-pore and pH of activated carbon was also changed from 10.2 to 6.3. Surface acidity of the activated carbon treated with chemicals increased slightly. The chemical treatment led to small increase in adsorptioil properties of solvents, ammonia and aldehydes of cigarette smoke, but content of chlorine and sulfur in activated carbon were reduced. As the results of smoking test, charcoal taste caused by the activated carbon was reduced significantly by the treatment with NaOH/HCl.

  • PDF

Improved Bioethanol Production Using Activated Carbon-treated Acid Hydrolysate from Corn Hull in Pachysolen tannophilus

  • Seo, Hyeon-Beom;Kim, Seung-Seop;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • 제37권2호
    • /
    • pp.133-140
    • /
    • 2009
  • To optimally convert corn hull, a byproduct from corn processing, into bioethanol using Pachysolen tannophlius, we investigated the optimal conditions for hydrolysis and removal of toxic substances in the hydrolysate via activated carbon treatment as well as the effects of this detoxification process on the kinetic parameters of bioethanol production. Maximum monosaccharide concentrations were obtained in hydrolysates in which 20 g of corn hull was hydrolyzed in 4% (v/v) $H_2SO_4$. Activated carbon treatment removed 92.3% of phenolic compounds from the hydrolysate. When untreated hydrolysate was used, the monosaccharides were not completely consumed, even at 480 h of culture. When activated carbon.treated hydrolysate was used, the monosaccharides were mostly consumed at 192 h of culture. In particular, when activated carbon-treated hydrolysate was used, bioethanol productivity (P) and specific bioethanol production rate ($Q_p$) were 2.4 times and 3.4 times greater, respectively, compared to untreated hydrolysate. This was due to sustained bioethanol production during the period of xylose/arabinose utilization, which occurred only when activated carbon-treated hydrolysate was used.

활성탄의 표면 구조 변화에 따른 흡착 특성 연구 (Adsorption properties of surface - modified activated carbon)

  • 김정렬;서문원;신창호;김영호;이근회;지상운
    • 한국연초학회지
    • /
    • 제16권2호
    • /
    • pp.191-197
    • /
    • 1994
  • Relationships between surface structure and adsorption properties of smoke components were investigated in surface-modified and un-modified activated carbon filter cigarettes. Commercially available activated carbon was treated with nitric acid and hydrogen peroxide as oxidant, and their pore volume, surface structure, BET surface area, pore type and size were studied. BET surface area and pore volume were decreased by nitric acid treatment, but median pore diameter was 8.1 $\AA$, which showed better development of pore compared with that of un-modified activated carbon, 6.9 $\AA$. In case of hydrogen peroxide treatment, BET surface area and pore volume were increased. Their pore was found to be a slit type based on V-t plot analysis. Neutralization capacities for bases of different strength (NaHCO3, Na2CO3, NaOEt and NaOH) showed that the majority of the acidic surface groups are of weak acidity. Modification of the activated carbon surface led to a slight change in adsorption properties when analyzing the smoke of triple-filter cigarette with surface-modified activated carbon.

  • PDF

수처리용 활성탄 제조에 관한 연구 (A Study on the Manufacture of Activated Carbon for Water Treatment)

  • 장성호;최동훈
    • 한국환경보건학회지
    • /
    • 제29권3호
    • /
    • pp.79-85
    • /
    • 2003
  • The purpose of this study was to disclose the manufacturing process of activated carbon using coal. It investigated the influences on the physical properties that were manufactured activated carbon by using anthracite coal, bituminous coal under carbonizated and activated condition. The adsorption capacities of organic material were superior when the ash content was lower 5∼10%, and the iodine value was about 1,000 mg/g, the adsorption capacity decreased rapidly when ash content was over 15%. The manufactured activated carbon were found characteristics such as the iodine value was over 1,031 mg/g, the specific surface area was over 1,032 $m^2$/g and the hardness was over 95% under manufacturing conditions which were carbonizated temperature of $600^{\circ}C$( 180 minute), activated temperature of 95$0^{\circ}C$(210 minute) and steam weight of 6 $m\ell$/min.100 g coal.

Effect of Activated Carbon on Growth of Allium tuberosum in Green House

  • Choi Seong-Kyu;Park Yeong-Tyae
    • Plant Resources
    • /
    • 제8권3호
    • /
    • pp.225-229
    • /
    • 2005
  • This study was conducted to investigate the effect of activated carbon on leave production of Allium tuberosum. Growth characteristics including plant height and leaf length were the highest when activated carbon was added with 5%, suggesting that optimum amount of activated carbon was ranged from 5 to 10%. Weight of fresh green vegetable in Allium tuberosum was low in control. And fresh weight of Allium tuberosum was higher in 5% treatment of activated carbon. However, when the plants were grown in activated carbon of $5{\sim}10%$, fresh yield of green vegetable of Allium tuberosum can be increased by using Activated Carbon. Activated carbon can be utilized as a soil conditioner in agricultural crop areas.

  • PDF

동복 호소수의 응집침전 및 활성탄 흡착에 의한 용존유기물 분자량 분포 특성 (Molecular Weight Distribution Characterization of Organics for the Dongbok Lake Water by Coagulation and Adsorption of Activated Carbon)

  • 정경훈;최형일
    • 한국환경과학회지
    • /
    • 제7권1호
    • /
    • pp.104-111
    • /
    • 1998
  • The Dongbok lake water before and after alum coagulation and activated carbon adsorption were analyzed in terms of organic contents, molecular weight distributuin (MWD), and UV-absorbance. Dissolved organic compounds in the Dongbok lake were fractionated into three molecular size classes by gel permeation chromatography. The fractionation was reasonably successful in isolating compounds with The bulk of the dissolved carbon was present in compounds of molecular weight in the range of 3,000~10,000. Alum coagulation preferentially treated molecules of high molecular weight, which has molecules larger than 10,000. The dissolved organic carbon (DOC) removal after activated carbon adsorption was high in the Fraction B , IR . The $A_{260}$/DOC ratio after alum and activated carbon treatment the Fraction II, III. This results suggest that the organics remaining after each treatment has a trihalomethane formation potential

  • PDF

시화반월산업단지 활성탄 공동재생시스템 적용을 위한 활성탄 흡착탑 개선에 따른 환경적 효과분석 (A Study on the Environmental Effects of Improvement of Activated Carbon Adsorption Tower for the Application of Activated Carbon Co-Regenerated System in Sihwa/Banwal Industrial Complex)

  • 최여진;이영우;정구회;김덕현;박승준
    • 청정기술
    • /
    • 제27권2호
    • /
    • pp.160-167
    • /
    • 2021
  • 본 연구에서는 시화반월산업단지에서 보편적으로 사용하고 있는 일반형 활성탄흡착탑과 활성탄 공동재생시스템 적용을 위해 개발된 카트리지형 활성탄흡착탑으로 개선하여 얻게 되는 환경적 효과분석을 고찰하였다. 일반형 활성탄흡착탑 4개소와 카트리지형 활성탄흡착탑 2개소를 선정하여 사용하고 있는 활성탄의 물성특성을 분석하고 환경오염물질의 저감효율을 비교 분석하였다. 그 결과, 카트리지형 활성탄 흡착탑에 사용되는 활성탄은 요오드흡착력 800 mg g-1 이상의 양질의 활성탄으로 확인되었으며 교체주기내에서 양호한 수준으로 활성탄 흡착성능이 유지되는 것으로 확인되었다. 환경오염물질 저검효율 분석결과 카트리지형 활성탄 흡착탑의 경우 THC (Total Hydrocarbon), toluene 및 MEK (Methylethylketone) 성분의 처리효율이 각각 71%, 77% 및 80%로 좋은 처리효율을 보인 것으로 확인되었다. 일반형 활성탄 흡착탑은 처리효율이 매우 낮아 배출오염물질을 처리하는 방지시설로서의 역할을 제대로 하지 못하고 있었다. 일반형 활성탄 흡착탑을 카트리지형 활성탄 흡착탑으로 개선하여 운영 시 배출오염물질을 저감시킬 수 있을 것으로 판단된다.

저농도(低濃度) 페놀의 활성탄(活性炭)에 대한 흡착특성(吸着特性)에 관(關)한 연구(硏究) (A Study on the Adsorption Characteristic of Low Concentration Phenol by Activated Carbon)

  • 권대영;박중현
    • 상하수도학회지
    • /
    • 제8권1호
    • /
    • pp.34-43
    • /
    • 1994
  • It is well known that the adsorption character of activated carbon is dependent on the specific surface area and pore volume, but the relationship between the surface-chemical structure and the adsorption character has not been studied very often. The purpose of this study is to investigate the effect of the acidic surface functional groups of activated carbon and the adsorption characteristics of low concentration phenol. So three types of activated carbons and four different treatments were introduced to this isotherm experiment. These treatments were nontreatment, 1N $HNO_3$ treatment, 6N $HNO_3$ treatment, $H_2O_2$ treatment. The conclusions of this study are as followings. If the initial concentration of phenol is high as 5mg/l, the adsorption is dependent on the specific surface area. If the initial concentration of phenol is low as $100{\mu}g/l$, the adsorption is dependent on the average pore volume. The acidic surface functional groups prevent the adsorption of phenol molecules to activated carbon. And the adsorbed amount decreases more for $HNO_3$ treatment than for $H_2O_2$ treatment and more for concentrated $HNO_3$ treatment than for dilute $HNO_3$ treatment.

  • PDF