Browse > Article
http://dx.doi.org/10.4489/MYCO.2009.37.2.133

Improved Bioethanol Production Using Activated Carbon-treated Acid Hydrolysate from Corn Hull in Pachysolen tannophilus  

Seo, Hyeon-Beom (Division of Food and Biotechnology, Chungju National University)
Kim, Seung-Seop (Division of Biomaterials Engineering, Kangwon National University)
Lee, Hyeon-Yong (Division of Biomaterials Engineering, Research Institute of Bioscience and Biotechnology, Kangwon National University)
Jung, Kyung-Hwan (Division of Food and Biotechnology, Chungju National University)
Publication Information
Mycobiology / v.37, no.2, 2009 , pp. 133-140 More about this Journal
Abstract
To optimally convert corn hull, a byproduct from corn processing, into bioethanol using Pachysolen tannophlius, we investigated the optimal conditions for hydrolysis and removal of toxic substances in the hydrolysate via activated carbon treatment as well as the effects of this detoxification process on the kinetic parameters of bioethanol production. Maximum monosaccharide concentrations were obtained in hydrolysates in which 20 g of corn hull was hydrolyzed in 4% (v/v) $H_2SO_4$. Activated carbon treatment removed 92.3% of phenolic compounds from the hydrolysate. When untreated hydrolysate was used, the monosaccharides were not completely consumed, even at 480 h of culture. When activated carbon.treated hydrolysate was used, the monosaccharides were mostly consumed at 192 h of culture. In particular, when activated carbon-treated hydrolysate was used, bioethanol productivity (P) and specific bioethanol production rate ($Q_p$) were 2.4 times and 3.4 times greater, respectively, compared to untreated hydrolysate. This was due to sustained bioethanol production during the period of xylose/arabinose utilization, which occurred only when activated carbon-treated hydrolysate was used.
Keywords
Acid hydrolysis; Activated-carbon treatment; Bioethanol; Corn hull; Pachysolen tannophilus;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Agbogbo, F. K. and Wenger, K. S. 2007. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. J. Ind. Microbiol. Biotechnol. 34:723-727.   DOI   ScienceOn
2 Chandel, A. K., Kapoor, R. K., Singh, A. and Kuhad, R. C. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98:1947-1950.   DOI   ScienceOn
3 Chaplin, M. F. and Kennedy, J. F. 1986. Carbohydrate analysis; A practical approach. pp 3. IRL Press, Oxford
4 Chen, M., Xia, L. and Xue, P. 2007. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int. Biodeterior. Biodegrad. 59:85-89.   DOI   ScienceOn
5 Asada, C., Yoshitoshi, N. and Kobayashi, F. 2005. Chemical characteristics and ethanol fermentation of the cellulose component in autohydrolyzed bagasse. Biotechnol. Bioprocess Eng. 10:346-352.   DOI   ScienceOn
6 Baek, S.-C. and Kwon, Y.-J. 2007. Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol. Bioprocess Eng. 12:404-409.   DOI   ScienceOn
7 Baek, S. W., Kim, J. S., Park, Y. K., Kim, Y. S. and Oh, K. K. 2008. The Effect of sugar decomposed on the ethanol fermentation and decomposition reactions of sugars. Biotechnol. Bioprocess Eng. 13:332-341.   DOI   ScienceOn
8 Hamelinck, C. N., van Hooijdonk, G. and Faaij, A. P. C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384-410.   DOI   ScienceOn
9 Demirbas, A. 2007. Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33:1-18.   DOI   ScienceOn
10 Gamez, S., Gonzalez-Cabriales, J. J., Ramirez, J. A., Garrote, G. and Vazquez, M. 2006. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J. Food Eng. 74:78-88.   DOI   ScienceOn
11 Carvalheiro, F., Duarte, L. C., Lopes, S., Parajo, J. C., Pereira, H. and Girio, F. M. 2005. Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem. 40:1215-1223.   DOI   ScienceOn
12 Karimi, K., Kheradmandinia, S. and Taherzadeh, M. J. 2006b. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy. 30:247-253.   DOI   ScienceOn
13 Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G. and Nilvebrant, N.-O. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24:151-159.   DOI   ScienceOn
14 Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96:673-686.   DOI   ScienceOn
15 O'Brien, D. J., Senske, G. E., Kurantz, M. J. and Craig, J. C. Jr. 2004. Ethanol recovery from corn fiber hydrolyzate fermentations by pervaporation. Bioresour. Technol. 92:15-19   DOI   ScienceOn
16 Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hagerdal, B. and Zacchi, G. 2006a. Simultaneous saccharification and co-fermentation of glucose and xylose in steampretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J. Biotechnol. 126:488-498.   DOI   ScienceOn
17 Qu, Y., Zhu, M., Liu, K., Bao, X. and Lin, J. 2006. Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol. J. 1:1235-1240.   DOI   ScienceOn
18 Aguilar, R., Ramirez, J. A., Garrote, G. and Vazquez, M. 2002. Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng. 55:309-318.   DOI   ScienceOn
19 Dale, B., Leong, C., Pham, T., Esquivel, V., Rios, I. and Latimer, V. 1996. Hydrolysis of lignocellulosics at low enzyme levels:application of the AFEX process. Bioresour. Technol. 56:111-116.   DOI   ScienceOn
20 Bustos, G., Ramirez, J. A., Garrote, G. and Vazquez, M. 2003. Modeling of the hydrolysis of sugar cane vagase with hydrochloric acid. Appl. Biochem. Biotechnol. 104:51-68.   DOI   ScienceOn
21 Vazquez, M., Oliva, M., Tellez-Luis, S. J. and Ramirez, J. A. 2007b. Hydrolysis of sorghum straw using phosphoric acid: Evaluation of furfural production. Bioresour. Technol. 98: 3053-3060.   DOI   ScienceOn
22 Grohmann, K. and Bothast, R. 1997. Saccharification of cornfibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem. 32:405-415.   DOI   ScienceOn
23 Herrera, A., Tellez-Luis, S. J., Ramirez, J. A. and Vazquez, M. 2003. Production of xylose from sorghum straw using hydrochloric acid. J. Cereal Sci. 37:267-274.   DOI   ScienceOn
24 Hespell, R. B. 1998. Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J. Agric. Food Chem. 46:2615-2619.   DOI   ScienceOn
25 Lau, M. W., Dale, B. E. and Venkatesh, B. 2008. Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol. Bioeng. 99:529-539.   DOI   ScienceOn
26 McDonald, S., Prenzler, P. D., Antolovich, M. and Robards, K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chem. 73:73-84.   DOI   ScienceOn
27 Saha, B. C., Dien, B. S. and Bothast, R. J. 1998. Fuel ethanol production from corn fiber: current status and technical prospects. Appl. Biochem. Biotechnol. 70-72:115-125.   DOI   ScienceOn
28 Schell, D. J., Riley, C. J., Dowe, N., Farmer, J., Ibsen, K. N., Ruth, M. F., Toon, S. T. and Lumpkin, R. E. 2004. A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour. Technol. 91:179-188.   DOI   ScienceOn
29 Saha, B. C., Iten, L. B., Cotta, M. A. and Wu, Y. V. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40:3693-3700.   DOI   ScienceOn
30 Vazquez, M. J., Alonso, J. L., Dominguez, H. and Parajo, J. C. 2006a. Enhancing the potential of oligosaccharides from corncob autohydrolysis as prebiotic food ingredients. Ind. CropsProd. 24:152-159.
31 Gulati, M., Kohlmann, K., Ladisch, M., Hespell, R. and Bothast, R. 1996. Assessment of ethanol production options for cornproducts. Bioresour. Technol. 58:253-264.   DOI   ScienceOn
32 Karimi, K., Emtiazi, G. and Taherzadeh, M. J. 2006a. Ethanol production from dilute-acid pretreated rice straw by simulta-neous. saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40:138-144.   DOI   ScienceOn
33 Gaspar, M., Kalman, G. and Reczey, K. 2007. Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem. 42:1135-1139.   DOI   ScienceOn
34 Ohgren, K., Rudolf, A., Galbe, M. and Zacchi, G. 2006b. Fuelethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30:863-869.   DOI   ScienceOn
35 Palmqvist, E. and Hahn-Hagerdal, B. 2000b. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74:25-33.   DOI   ScienceOn
36 Sanchez, O. J. and Cardona, C. A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99:5270-5295.   DOI   ScienceOn
37 Yang, Z., Zhang, B., Chen, X., Bai, Z. and Zhang, H. 2008. Studies on pyrolysis of wheat straw residues from ethanol production by solid-state fermentation. J. Anal. Appl. Pyrolysis 81: 243-246.   DOI   ScienceOn
38 Palmqvist, E. and Hahn-Hagerdal, B. 2000a. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 74:17-24.   DOI   ScienceOn
39 Bustos, G., Ramirez, J. A., Garrote, G. and Vazquez, M. 2003. Modeling of the hydrolysis of sugar cane vagase with hydrochloric acid. Appl. Biochem. Biotechnol. 104:51-68.   DOI   ScienceOn
40 Georgieva, T. I. and Ahring, B. K. 2007. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl. Microbiol. Biotechnol. 77:61-68.   DOI   ScienceOn