• 제목/요약/키워드: Activated sludge process

검색결과 416건 처리시간 0.024초

알칼리-오존 동시 전처리된 잉여슬러지로부터 결정화를 이용한 고품질 외부탄 소원 회수 (Recovery of high quality external carbon sources using crystallization from pretreated excess activated sludge by alkali and ozone)

  • 서인석;김홍석;김병균;김연권
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.641-646
    • /
    • 2008
  • In this research, recovery of high quality organics from excess activated sludge and its potential as a external carbon sources for BNR process was studied. By simultaneous treatment of alkali and ozone, TSS concentration was reduced by 32%, and RBDCOD fraction was increased by 76.2%, and major constitute of produced organic were acetic acid and propionic acid. Also, nitrogen and phosphorus were greatly solubilized. However, because acid-hydrolyzable phosphorus(AHP) was major part of solubilized phosphorus, $NH_4{^+}-N$ and $PO_4{^3}-P$ concentration were insufficient for effective formation of crystal like as MAP(Magnesium Ammonium Phosphate) and hydroxyapatite. By placing BPR reactor before alkali-ozone treatment reactor, $PO_4{^3}-P$ concentration in pretreated sludge was increased by 1.8 times, and improved potential of phosphorus recovery by crystallization. In experiment of crystallization, hydroxyapatite formation was more easily applied than MAP. By hydroxyapatite formation, $SCOD/PO_4-P$ ratio was greatly increased from 32.7 at control to 141.9 at $Ca^{2+}/PO{_4}^{3-}-P$ mole ratio of 2.4. The results based on this study indicated that the proposed system configuration has potential to reduce the excess sludge production, to recover phosphorus in usable forms as well as utilize organics as a external carbon source in BNR process.

Phenol 폐수(廢水)의 처리공법(處理工法) 개발(開發)에 관한 연구(硏究) (A Study on the Development of a Treatment Process for Phenolic Wastewaters)

  • 조광명
    • 대한토목학회논문집
    • /
    • 제2권1호
    • /
    • pp.19-31
    • /
    • 1982
  • 본(本) 연구(硏究)는 여과막(濾過膜) 활성(活性)슬러지공법(工法)에 의하여 독성(毒性)이 있는 phenol 폐수(廢水)의 처리가능성(處理可能性)을 조사하기 위하여 실시되었다. 합성(合成) phenol 폐수(廢水)를 4 기(期)에 걸쳐 연속주입 하면서 실시한 실험결과에 의하면 과거의 연구결과와 마찬가지로 합성섬유(合成纖維)담요가 내구성(耐久性), SS 제거율(除去率), 폐수투과율(廢水透過率) 등(等)을 고려할 때 여과막(濾過膜)으로서 알맞는 재료(材料)이며, 반응조(反應槽)의 수온(水溫)이 $10{\sim}15^{\circ}C$이하로 장시간 지속되면 여과막(濾過膜)의 폐수투과율(廢水透過率) 크게 감소된다는 것이 확인되었다. 여과막(濾過膜) 활성(活性)슬러지공법(工法)에서는 반응조내(反應槽內)의 미생물(微生物) 농도(濃度)가 높게 유지될 수 있어 높은 유기물부하(有機物負荷)서도 F/M 비(比)가 낮게 되므로 높은 phenol 제거효율(除去效率)을 얻을 수 있다. 본 연구에서는 반응조가 정상적으로 운영된 경우 $63{\sim}468mg/{\ell}$의 유입수(流入水) phenol 농도에서 $0.1mg/{\ell}$ 이하의 유출수(流出水) phenol 농도를 보였다. 또한 본(本) 연구(硏究)에서는 미생물(微生物) 성장계수(成長係數)가 제거(除去)된 COD 1 kg 당 0.035~0.160 kg SS로서 다른 활성(活性)슬러지공법(工法)에 비하여 매우 낮았으며 슬러지의 호기성(好機性) 소화시(消化時) 내호흡율(內呼吸率)의 온도보정계수(溫度補正係數)는 1.021로 관측되었다.

  • PDF

미생물호흡률 측정에 의한 COD분액과 공정모사를 이용한 동절기 하수유출수의 NBOD 발생원인 분석 (The Analysis of NBOD from Sewer Outflow in Winter Season by the COD Fractions using the Respirometry and Process Simulations)

  • 조욱상;강성욱;임동혁
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.96-103
    • /
    • 2010
  • In this work, the presence of nitrification biochemical oxygen demand (NBOD) frequently occurred in the sewer outflow in winter season was analysed by the COD fraction methods using the respirometry and process simulations with real operation data measurements and analysis. The activated sludge models applied in this process simulation were based on the ASM No.2d temp. models, published by International Association on Water Quality (IAWQ). The ASM No.2d model is an extension of the ASM No.2 model and takes into account of carbon removal, nitrification, denitrification and phosphorus removal. The denitrifying capacity of phosphorus accumulating organisms has been implemented in the ASM No.2d model because experimental evidence shows that some of the phosphorus accumulating organisms can denitrify. It was shown that the concentrations of autotrophs (X_AUT) in the secondary clarifier and the $NH_4-N$ of T-N increased in the presence of NBOD measurements. Because of the low temperature (average $8^{\circ}C$) and possible operational troubles, the outcoming autotrophs exhausted oxygen in the process of nitrifying $NH_4-N$.

하수 염소 소독시 소독부산물 발생 특성 (Formation Characteristics of Disinfection By-Products using Chlorine Disinfection in Sewage Effluent)

  • 백영석;송민형;정경훈;권동식;이기공
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.275-280
    • /
    • 2004
  • This study was performed to investigate the disinfection efficiency and the formation characteristics of disinfection by-products(DBPs) by chlorination in the sewage effluent. The effluent was sampled from the sewage treatment plants operated in the activated sludge process and the advanced sewage process. The type of DBPs investigated were Trihalomethanes(THMs), Dichloroacetonitrile(DCAN), Chloral hydrate(CH), Dichloroacetic acid(DCAA), Trichloroacetic acid(TCAA). Major findings are as follows. First, the optimum injection concentration for chlorination in sewage effluent were found to be in the range $0.5{\sim}1.0mg\;cl_2/L$. Also, It was found that the chlorine dosage in the effluent of activated sludge process was higher than in the effluent of advanced sewage process. Second, the maximum formation concentration of THMs were $12.7{\mu}g/L$. The THMs formation reaction was finished in a short time of several seconds and chloroform was mainly formed. Also, it was found that the concentration of ammonium nitrogen is higher, the concentration of THMs is lower. Third, it was found that DCAA and TCAA were mainly formed as DBPs by disinfection.

Self-forming dynamic membrane formed on mesh filter coupled with membrane bioreactor at different sludge concentrations

  • Rezvani, Fariba;Mehrnia, Mohammad Reza
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.255-262
    • /
    • 2018
  • This study attempted to evaluate the process of self-forming dynamic membrane formation on mesh filter in membrane bioreactor with a two-stage method of batch (agitation) and continues (aeration) stage at different sludge concentrations. Four concentrations of activated sludge including $6{\pm}0.4$, $8{\pm}0.5$, $10{\pm}0.3$, $14{\pm}0.3g/L$ were used to demonstrate the optimal concentration of sludge for treating municipal wastewater and reducing fouling in dynamic membrane bioreactor. The formation time and effluent turbidity were decreased in the batch stage when increasing the activated sludge concentration. The minimum values of formation time and effluent turbidity were 14 min and 43 NTU for the optimum mixed liqueur suspended solids of $8{\pm}0.5g/L$, respectively. To improve operational condition and fouling reduction in the aeration stage, critical fluxes were measured for all concentrations by flux-step method. With increasing the sludge concentration, the relevant critical fluxes reduced. The optimum subcritical flux of $30L/m^2/h$ was applied as operating flux in the second stage. The maximum COD removal efficiency of 98% was achieved by the concentration of $8{\pm}0.5g/L$. Compressibility index of self-forming dynamic membrane and transmembrane pressure trend remained somewhat constant until the optimal concentration of $8{\pm}0.5g/L$ and thereafter they increased steeply.

부유 및 부착성장 미생물을 이용하는 공정의 유기물, 질소 및 인 제거 특성 비교 (Comparison of Removal Characteristics of Organic Matter, Nitrogen and Phosphorus Between Suspended-Growth and Attached-Growth Biological Processes)

  • 류홍덕;이상일
    • 대한환경공학회지
    • /
    • 제27권2호
    • /
    • pp.206-214
    • /
    • 2005
  • 본 연구는 도시하수 처리시 부유성장 미생물만을 이용하는 표준 활성슬러지 공정(Conventional Activated Sludge; CAS) 및 MLE(Modified Ludzack-Ettinger) 공정과 부유 및 부착 미생물을 동시에 활용하는 하이브리드(hybrid)형 공정인 M-Dephanox(Modified-Dephanox) 공정의 유기물, 질소 및 인 제거효율을 상호 비교 검토하고자 하였다. M-Dephanox 공정은 기존 Dephanox 공정의 단점을 극복하기 위하여 고안된 공정으로서 기존 Dephanox 공정에 비해 탈질 효율을 증가시킬 수 있다. 연구 결과 부유 성장 미생물을 이용하는 MLE 공정에 비해 하이브리드형 공정인 M-Dephanox 공정의 TCOD, T-N 및 T-P 제거효율이 각각 12.3, 18.6, 28.2% 더 높게 관찰 되었다. M-Dephanox 공정이 MLE 공정에 비해 유기물 및 질소 제거 효율이 더 높은 원인은 M-Dephanox 공정이 하이브리드 공정이자 다단 슬러지 공정(multi-sludge)인 동시에 생흡착(biosorption)을 이용한 효과적인 유기물 이용 기작이 있기 때문이다. M-Dephanox 공정의 질산화 반응조에서의 암모니아성 질소 제거효율은 약 2hr의 수리학적 체류시간에서 약 96.7%로 나타나 Dephanox 공정과 관련한 기존 문헌에서 보고된 5 hr의 체류시간 보다 3 hr 짧은 수리학적 체류시간에서도 높은 암모니아성 질소 제거효율을 관찰 할 수 있어 전체 공정의 수리학적 체류시간을 줄이는데 커다란 역할을 할 것으로 기대된다.

활성슬러지 반응탱크의 풍량제어지표인 NADH에 관한 연구 (Study on NADH which is the Air Volume Sensor in the Activated Sludge Reaction Tank)

  • 정우진;홍성민;김한래;장순웅
    • 한국환경과학회지
    • /
    • 제25권3호
    • /
    • pp.439-446
    • /
    • 2016
  • Domestic sewerage treatment plant is operated by activated sludge method and its modified method by using microorganism. In most cases, a method of using microorganism is directly controlled by the operator based on individual judgment through factors of DO, pH and ORP. In addition, under aerobic condition in bioreactor, energy consumption including excessive air injection is learned to be somewhat plenty. In order to solve this problem, in most of the process, improvement of internal recycling and activated environmental factor of microorganism were researched extensively. However, as factors are changed depending on various conditions, it is not sufficient as an indicator of judgment. As such, a research on operation of bioreactor that measures metabolic change in short time by directly measuring activated condition of microorganism using NADH fluorometer is required in reality.It is considered that the method like this could supplement problem of energy consumption being occurred in the existing treatment method and operational optimization of bioreactor would be enabled by controlling optimal air volume. Therefore, in this study, in order to obtain optimal operational indicator of bioreactor, proper air volume control test was performed and through batch test and site evaluation, possibility of NADH sensor being utilized as operational control indicator of bioreactor is intended to be analyzed. In order to compare with measured value, DO, ORP that are operational control indicator of existing bioreactor were used. As MLSS concentration was increased through batch test, NADH value was increased and site evaluation also showed similar tendency to batch test. Resultantly, it could be confirmed that changing level of NADH fluorometer was a sensor that could measure bioreactor condition effectively and optimized scale of bioreactor is considered to be utilized.

Experimental Studies on Acration in Water

  • Paik, Nam-Won;Chung, Kyou-Chull
    • 한국환경보건학회지
    • /
    • 제2권1호
    • /
    • pp.25-28
    • /
    • 1975
  • The main purpose of the aeration units in activated sludge process is to enable micro-organisms to metabolize the constituents of the waste effectively by supplying sufficient oxygen for their respiration. Normally, aeration is achieved by bringing the mixture of waste and sludge into intimate contact with air. The main type of aeration unit is diffused air unit in which air is injected into the liquid in the form of bubbles. The object of these laboratory studies is to compare the performance of three laboratory scale aeration systems at various depths of submergence, aerating water with and without the addition of a surface active agent.

  • PDF

SBR 및 BS-SBR 처리의 공정변화 연구 (Process variations in SBR and BS-SBR treatment)

  • 양형재;정윤철;신응배
    • 환경위생공학
    • /
    • 제12권1호
    • /
    • pp.59-68
    • /
    • 1997
  • 이 연구에서는 SBR에 Rotating disks를 부착하여 회전하면서 두 원판 사이에서 전단력이 발생하는 BS-SBR을 이용하여 용해성 유기물질 제거율과 슬러지 분리에 대해 비교 검토하였다. BS-SBR 공정에서는 부유성 활성슬러지와 생물학적 고정막에 대해 동시처리 되어 높은 처리효율을 보였다. SCOD 제거율은 SBR보다 높은 97%를 보였다. 처리수의 평균 SS 농도는 $4.8mg/{\ell}$ 정도로 나타났고, 1-cycle/d 및 3-cycle/d 모두 $10mg/{\ell}$ 이하를 유지하여 매우 효과적임을 알 수 있었다. 슬러지 침전 특성은 SBR과는 상이한 매우 좋은 결과를 보였다. 운전 중 슬러지는 진한 갈색으로 플록이 잘 형성되었고, 그 크기는 SBR에서 보다 크다는 것이 눈으로 확인할 수 있을 정도였다.

  • PDF

하수처리장 에너지 자립화를 위한 하수 에너지 잠재력 회수 기술 (Recovering the Energy Potential of Sewage as Approach to Energy Self-Sufficient Sewage Treatment)

  • 배효관
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.121-131
    • /
    • 2018
  • Domestic sewage treatment plants (STPs) consume about 0.5 % of total electric energy produced annually, which is equivalent to 207.7 billion Korean won per year. To minimize the energy consumption and as a way of mitigating the depletion of energy sources, the sewage treatment strategy should be improved to the level of "energy positive". The core processes for the energy positive sewage treatment include A-stage for energy recovery and B-stage for energy-efficient nitrogen removal. The integrated process is known as the A/B-process. In A-stage, chemically enhanced primary treatment (CEPT) or high rate activated sludge (HRAS) processes can be utilized by modifying the primary settling in the first stage of sewage treatment. CEPT utilizes chemical coagulation and flocculation, while HRAS applies returned activated sludge for the efficient recovery of organic contents. The two processes showed organic recovery efficiencies ranging from 60 to 70 %. At a given recovery efficiency of 80 %, 17.3 % of energy potential ($1,398kJ/m^3$) is recovered through the anaerobic digestion and combustion of methane. Besides, anaerobic membrane bioreactor (AnMBR) can recover 85% of organic contents and generate $1,580kJ/m^3$ from the sewage. The recovered energy is equal to the amount of energy consumption by sewage treatment equipped with anaerobic ammonium oxidation (ANAMMOX)-based B-stage, $810{\sim}1,620kJ/m^3$. Therefore, it is possible to upgrade STPs as efficient as energy neutral. However, additional novel technologies, such as, fuel cell and co-digestion, should be applied to achieve "energy positive" sewage treatment.