• 제목/요약/키워드: Activated sludge process

검색결과 415건 처리시간 0.022초

회전식 부착 바실러스를 이용한 하수고도처리 공정에서의 총대장균군 제거 특성 (Removal Characteristics of Total Coliforms in a Rotating Activated Bacillus Contactor Process)

  • 김응호;조연제;박성주;신광수;임수빈;박현주
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.73-78
    • /
    • 2005
  • This study was performed to examine the disinfection capability of a Rotating Activated Bacillus Contactor (RABC) system, in which the predominant species, Bacillus sp. was expected to have a removal or inactivation effect of total coliforms. In a settling test with mixtures of E. coli and Bacillus sp., a high removal of E. coli was observed at $20{\sim}40^{\circ}C$, while insignificant removal at $10^{\circ}C$. In a batch test, a 4.5% addition of Bacillus sp. to activated sludge considerably enhanced the removal effect of total coliforms, indicating Bacillus sp. played an important role in improving the settlability of the sludge and coliforms. In a pilot scale RABC system, the concentration of total colifroms reduced remarkably in the settling tank, suggesting that total coliforms in the RABC process were eliminated through coagulation and precipitation, probably due to extracellular polymeric substance (EPS) of Bacillus sp. The fraction of Bacillus sp. in the total cell count in the RABC process was in the range of 4.5%~6.3%. The majority (75%) of the Bacillus sp. in the RABC process was Bacillus subtilis which is known to enhance coagulation and precipitation by producing EPS. Hence, an adoption of a RABC process might be able to eliminate the disinfection unit process from a wastewater treatment system.

석유화학계 기초화합물 제조시설과 합성수지 및 기타 플라스틱물질 제조시설의 폐수처리시설 BAT평가 (Assessment of Best Available Technology of Wastewater Treatment Facilities in Petrochemical Basic Compound Manufacturing and Plastics and Synthetic Resins Manufacturing)

  • 김영노;임병진;권오상
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.59-65
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for petrochemical basic compound manufacturing (PBCM) and plastics and synthetic resins manufacturing (PSRM) industry. Wastewater discharged from the each category contains high concentration of COD and toluene. Eighteen sites were surveyed and wastewater qualities were analyzed. Six and two different technologies were applied to the PBCM and PSRM industry for the end-of-pipe treatment process, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options: typical activated-sludge process + sand filtration + activated carbon adsorption (PBCM) and wet oxidation + chemical precipitation + typical activated-sludge process + chemical precipitation (PSRM) were selected as the BAT for each industry.

활성슬러지 모델을 이용한 A2O공법 영양염류 제거 및 미생물 거동 (Nutrients removal and microbial activity for A2O Process Using Activated Sludge Models)

  • 윤현식;김덕진;최봉호;김문일
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.889-896
    • /
    • 2012
  • In this study, simulation results of nitrogen and phosphorus removals and microbial activities for an $A_2O$ process in wastewater treatment plant are presented by using Activated Sludge Models (ASMs). Simulations were performed using pre-calibrated model and layout implemented in GPS-X simulation software. The models were used to investigate variations of SRT, water temperature, DO and C/N ratio effect on nutrients removal and microbial activity. According to the simulated results, the successful nitrification required SRT higher than 10.3 days, whereas increase of $NO_3$-N loading in the anaerobic reactor caused phosphorus release by PAOs; the effluent $NH_4$-N showed rapid change between $12^{\circ}C$(21.7 mg/L) and $13^{\circ}C$(3.2 mg/L); the effluent phosphorus was increased up to 1.9 mg/L at water temperature of $25^{\circ}C$; the DO increase was positive for heterotrophs and autotrophs growths but negative for PAOs growth; the PAOs showed low activity when C/N ratio was lower than 2.5. The experimental results indicated that the calibrated models can assure the prediction quality of the ASMs and can be used to optimize the $A_2O$ process.

확률밀도함수 기반 유입하수 재현 및 활성슬러지공정 설계기법 개발 (Development of Application Method of Influent Wastewater Generation and Activated Sludge Process Design Based on Probability Density Function)

  • 유광태;김종락;윤주환;박기정
    • 한국물환경학회지
    • /
    • 제33권2호
    • /
    • pp.140-148
    • /
    • 2017
  • An important factor in determining the design and treatment efficiency of wastewater treatment plants (WWTPs) is the quantity and quality of influent. These detailed and accurate information is essential for process control, diagnosis and operation, as well as the basis in designing the plant, selecting the process and determining the optimal capacity of each bioreactor. Probabilistic models are used to predict the wastewater quantity and quality of WWTPs, which are widely used to improve the design and operation of WWTPs. In this study, the optimal probability distribution of time series influent data was derived for predicting water quantity and quality, and wastewater influent data were generated using the Monte Carlo simulation analysis. In addition, we estimated various alternatives for the improvement of bioreactor operations based on present operation condition using the generated influent data and activated sludge model, and suggested the alternative that can operate the most effectively. Thus, the influent quantity and quality are highly correlated with the actual operation data, so that the actual WWTPs influent characteristics were well reproduced. Using this will improve the operating conditions of WWTPs, and a proposed improvement plan for the current TMS (Tele Monitoring System) effluent quality standards can be made.

MLE와 A/O 공정에서의 nirS 와 nirK 를 가진 탈질미생물의 정량적 분포 (Quantitative distribution of denitrifying bacteria with nirS and nirK in MLE and A/O process)

  • 임동석;김윤중;김형건;박승국;정태학
    • 상하수도학회지
    • /
    • 제26권4호
    • /
    • pp.591-598
    • /
    • 2012
  • Denitrification is an important biological mechanism in wastewater treatment process because this process is technically to remove nitrogen from water to air. There have been lots of study about denitrification engineering and molecular biological research about denitrifying bacteria, respectively. However, combination of these researches was unusual and rare. This study is about the correlation between quantity of denitrifying bacteria and denitrification potential, and consists of NUR batch test as analysis method of denitrification potential and quantitative molecular analysis for denitrifying bacteria. Three reactors (A/O, MLE and A/O of nitrogen deficiency) are operated to get activated sludge with various denitrification potential. All samples which were acquired from reactors were measured denitrification potential by NUR test and NUiR test. Also, Real-time PCR was conducted for quantification of denitrifying bacteria composition in activated sludge. The various denitrification potentials were measured in the reactors. The denitrifiaction potential was the highest in MLE process and the reactor of the nitrogen deficiency showed the lowest. Genomic DNA of activated sludge was obtained and consequently, real-time PCRuse the primer sets of nirK and nirS were conducted to quantify genes involving denitrification reductase production. As the result of real-time PCR, nirK gene showed more significant influence on denitrification potential comapred with nirS gene.

간헐폭기법에 의한 돈사 폐수 처리에 관한 연구 (A Study on the Treatment of Swine Wastewater by Using Intermittently Aerated Activated Sludge Process)

  • 양태두;이미경;정윤진
    • 상하수도학회지
    • /
    • 제12권4호
    • /
    • pp.86-96
    • /
    • 1998
  • In this study, an intermittently aerated activated sludge process, modified process from conventional activated sludge process, was developed to treat high strength swine wastewater, which has been blamed as major pollutant for stream pollution. Therefore, the optimum cycle for oxic and anoxic period, SRT, and OLR were studied as design parameters. The effects of different time interval for oxic and anoxic period on nitrification and denitrification were examined by operating two reactors with 60/60min and 60/90min as oxic/anoxic period. Although the reactor with 60/60min showed complete denitrification of $NO_x-N$ generated during oxic period, the reactor with 60/90min showed incomplete nitrification due to the inactivity of nitrifier by accumulated $NH_3-N$ toxicity during anoxic period. Therefore, it is recommended to operate same interval for oxic and anoxic period. In order to determine the optimum cycle for oxic/anoxic period, four different reactors with 30/30, 60/60, 90/90 and 120/120min were examined. The reactor operation with 90/90min was optimum to get the most stable results in this study. However, the optimum cycle for oxic and anoxic period should be changed with characteristics of influent wastewater and operating conditions. According to lie operation results of three reactors with SRT of 15, 20 and 30days. The reactor with 2Odays SRT showed best removal efficiency of T-N. The optimum OLR would be $2.5Kg\;COD/m^3/day$ which showed the most stable nitrification and denitrification. Since characteristics of influent wastewater in the real system has a severe fluctuation, so it is very difficult to determine each interval for oxic and anoxic period. Therefore, ORP curves, describing the change of oxidation/reduction potential in reactor, can be used as a control parameter for automatic control of oxic and anoxic period. In other words, bending point (Nitrate Knee) of ORP curve during anoxic period could be used as a starting point of oxic period.

  • PDF

생물반응기를 도입한 돈분뇨의 생물학적 처리공정에서 악취발생 특성 및 미생물동정에 관한 연구 (A Study on the Odor Characteristics and Identification of Microbial in Biological Swine Manure Treatment Process by Bioreactor)

  • 고준일;박귀환;배주순;오길영;정선용
    • 대한환경공학회지
    • /
    • 제37권9호
    • /
    • pp.526-532
    • /
    • 2015
  • 유기성폐수 처리공정에서 악취발생농도가 높을 것으로 예상되는 양돈분뇨 처리공정에 pellet과 stone을 충진한 생물 반응기를 도입하고 대조시설로서 생물반응기를 도입하지 않는 활성슬러지법 공정과 비교하여 반응조 운전상태, 처리수질, 악취발생농도를 측정하였다. 거품발생, 처리수 투시도 등에서 생물반응기를 도입한 반응조가 훨씬 안정적인 모습을 보였으며 BOD 제거효율도 우수하였다. 반면, 총질소(T-N), 총인(T-P) 제거효율은 두 개의 반응조가 큰 차이를 보이지 않아 방류수 수질기준을 만족시키기 위해서는 별도의 고도처리를 하여야 할 것으로 나타났다. 악취는 암모니아성 질소, 암모니아 농도, 복합악취를 기준으로 살펴본 결과 생물반응기를 도입한 공정이 활성슬러지 공정보다 적게는 4배에서 최대 24배 이상 낮게 나타나 악취원인물질 발생이 적은 것으로 나타났다. 황화수소, 메틸머캅탄, 디메틸설파이드, 디메틸디설파이드 농도는 각각의 반응조 모두 검출되지 않거나 5 ppb에 불과하였으며 두 반응조의 차이 또한 크지 않는 것으로 나타났다. 생물반응기 공정에서는 주로 Bacillus sp./ Pseudomonas sp. 종이 주를 이루고 활성슬러지 공정에서는 Bacterium sp. Chryseobacterium sp. 종이 주를 이루었다.

메탄발효 효율향상을 위한 하.폐수 슬러지의 전처리 기술 (Pretreatment of Waste-activated Sludge for Enhancement of Methane Production)

  • 남궁규철;전체옥
    • 한국미생물·생명공학회지
    • /
    • 제38권4호
    • /
    • pp.362-372
    • /
    • 2010
  • 다양한 하 폐수 처리공정 중 혐기성 소화공정은 이산화탄소 배출을 감소시키고 생성되는 메탄을 에너지로서 사용할 수 있는 장점을 가지고 있다. 본 논문에서는 이러한 혐기성 소화공정의 문제점과 보완점에 대해 살펴보았다. 가수분해과정은 혐기성 소화과정 중 율속단계에 해당하여 소화공정과정을 촉진시키고 바이오가스의 생산을 증가시키기 위하여 다양한 전처리 방법이 개발되어왔다. 현재 혐기성 소화공정을 위한 전처리 방법 중 열처리 방법, 초음파 처리, 기계적 처리방법, 화학적 처리방법 등이 상업적으로 이용되고 있으며, 이들 공정은 슬러지 플록 또는 세포의 파괴를 통해 세포분획물이 생물학적으로 분해될 수 있는 형태로 전환시키는 것을 목적으로 한다. 이러한 과정들 모두는 특정 상황에 따른 장점과 단점을 모두 지니고 있으므로 각 공정과정에 대한 이해와 이를 통한 적용을 통해 특정 슬러지에 적합한 최적의 전처리 공정을 도출해 낼 필요가 있다. 또한 혐기성 소화공정의 효율증대와 경제성 확대를 위한 혐기성 소화공정 개발이 필요하다고 할 수 있다.

제약폐수 활성슬러지 공정에서 슬러지의 생물학적 활성 측정

  • 문순식;이상훈;최광근;이상훈;문홍만;이진원
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.533-536
    • /
    • 2001
  • 본 연구는 제약폐수 처리에 있어서 폐수처리장내의 미생물 활성을 최대로 하여 운전효율을 높이는 것을 목적으로 하고 있다. 각 부하에 따른 영향을 살펴보고 각종 동력학 계수를 측정하여 실제 폐수처리 공정에 있어서 최적의 조건으로 운전할 수 있도록 하는 것이 목적인데, 이에 MLSS 부하, COD 부하에 따른 결과들을 구할 수 있었다. 반복실험을 통하여 더욱 정확한 동력학 계수를 측정할 수 있으리라 기대한다.

  • PDF

유입하수 유기물 분류 및 공정모사를 통한 하수처리공정 진단 I : 유입하수 유기물 분류 (Diagnosis of Wastewater Treatment Processes through the Wastewater COD Fractionation and Process Simulation I : Wastewater COD Fractionation)

  • 최영균;정태학
    • 상하수도학회지
    • /
    • 제21권5호
    • /
    • pp.513-520
    • /
    • 2007
  • The simulation programs used for diagnosis and design of activated sludge process require organic fractions in municipal wastewater as the input variables. However, methods for characterizing organic fractions are still under development, and are not standardized. In this study, total COD of municipal wastewater was experimentally subdivided into readily and slowly biodegradable COD as well as soluble and particulate inert COD. The COD fractionation of the three municipal wastewater for one year shows linear relationship between each COD fraction and TCOD concentration with around 100% COD balance. This result means that the COD fraction do not vary very much with time, although the actual influent concentrations vary significantly with time and day. Therefore, the experimentally subdivided COD fractions can be utilized as wastewater specific parameters for the simulation of activated sludge processes.