• Title/Summary/Keyword: Activated sludge process

Search Result 415, Processing Time 0.029 seconds

Dynamics Behavior of Phage-Host System Related to Microlunatus phosphovorus in Activated Sludge with Host Inoculation

  • Lee, Sang-Hyon;Otawa, Kenichi;Onuki, Motoharu;Satoh, Hiroyasu;Mino, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1518-1522
    • /
    • 2006
  • In the present study, it was observed how the phage-host system that is naturally reproduced in activated sludge is affected by the host inoculation. The system of Microlunatus phosphovorus and its phages was selected as the phage-host system native to an activated sludge system operated for 19 days under sequencing anaerobic-aerobic conditions with glutamate as the main carbon source. The phage-host system related to M. phosphovorus was monitored by plaque assay for the phages and by fluorescent in situ hybridization (FISH) for the bacterial host. In addition, the whole phage structure was also monitored by pulsed-field gel electrophoresis (PFGE). During the first 9 days, the phage-host system was more or less steady at approx. 9% (FISH/ DAPI) for M. phosphovorus and approx. 10,000 PFU/ml for its lytic phages. Microlunatus phosphovorus JCM9379 was inoculated into the activated sludge on day 10. Right after the inoculation, M. phosphovorus was approx. 24% (FISH/DAPI) whereas its lytic phages dropped down to approx. 500 PFU/ ml. After the host inoculation (within 9 days), however, the phage-host system eventually reverted to its original level in each population. On the other hand, the whole phage structure was not significantly changed by M. phosphovorus inoculation but stable throughout the process operation. Only the minor change that four phage groups gradually became abundant after the host inoculation was observed.

Cultivable Bacterial Community Analysis of Dairy Activated Sludge for Value Addition to Dairy Wastewater

  • Biswas, Tethi;Chatterjee, Debasmita;Barman, Sinchini;Chakraborty, Amrita;Halder, Nabanita;Banerjee, Srimoyee;Chaudhuri, Shaon Ray
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.585-595
    • /
    • 2019
  • Analysis of bacterial communities based on their 16S rDNA sequences revealed the predominance of Proteobacteria (Aeromonas sp., Acinetobacter sp. and Thaueraamino aromatica sp.) and uncultured bacterium in activated sludge from the effluent treatment plant (ETP) of Mother Dairy, Calcutta (India). Each isolate was used for bioremediation of dairy wastewater with simultaneous conversion of nitrogenous pollutants into ammonia. A consortium developed using seven of these isolates and three Bacillus strains from different environmental origins could reduce 93% nitrate with simultaneous production of ammonia (626 ㎍/100 ml) within 20 h in non-aerated, immobilized conditions as compared to 82% nitrate reduction producing 2.4 ㎍/100 ml ammonia in 96 h with extensive aeration in a conventional ETP. The treated ammonia-rich effluent could be used instead of freshwater and fertilizer during cultivation of mung bean with 1.6-fold increase in grain yield. The ETP with the surrounding agricultural land makes this process a zero liquid discharge technology for using the biofertilizer generated. In addition, the process requires minimal energy supporting sustained environmental health. This method is thus proposed as an alternative approach for small-scale dairy ETPs.

Evaluation of COD Solubilization and Reduction of Waste Activated Sludge by pH Control (pH 조절을 통한 폐활성 슬러지의 COD 가용화 및 감량화 평가)

  • Kim, Youn Kwon;Moon, Yong Taik;Kim, Ji Yeon;Seo, In Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.551-558
    • /
    • 2007
  • From the view point of biological wastewater treatment, C/N ratio is one of the most important factor in biological nutrient removal process. However, municipal sewage in Korea is characterized by extremely low content of carbon source and relatively higher portion of N source. Accordingly, it is necessary to dose external carbon source in order to obtain higher degree of carbon source within the process. In this study, the effects of pH pretreatment as an alternative plan for increasing carbon source on the cell disruption and COD solubility of waste activated sludge were conducted under well defined experimental conditions. During 5 hours, the value of COD solubilization rate ($S_R$) at pH 11.5 is approximately 4.4 times higher than the value of $S_R$ at pH 9.5. It is expected that the level of SCOD increased due to the result from cell disruption. However, VSS/TSS ratio was not significantly changed after 5 hours. As Alkalinity changes gradually from less than 15, 30 and 60 meq NaOH/L, average RBCOD/SCOD fraction showed 34, 36 and 45%,respectively.

Inhibition effect of silica nanoparticle on the oxygen uptake rate of activated sludge (실리카 나노입자에 의한 활성슬러지 활성도 저해 효과 분석)

  • Lee, Soo Mi;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Nanotechnology has become one of the fastest developing technologies and recently applied to a variety of industries. Thus, increasing number of nano materials including various nanoparticles would be discharged into wastewater and consequently entering a biological wastewater treatment process. However, the impact of the nano particles on biological wastewater treatment has not been estimated intensively. In this research, we investigated the effect of silica nanoparticle on the oxygen uptake rates (OURs) of activated sludge used in a conventional wastewater treatment process. The inhibition (%) values were estimated from the results of OURs experiments for the silica nanoparticles with various sizes of 10-15, 45-50, and 70-100 nm and concentrations of 50, 250, and 500 ppm. As results, the inhibition value was increased as the size of silica nano particles decreased and the injected concentration increased. The maximum inhibition value was investigated as 37.4 % for the silica nanoparticles with the size of 45-50 nm and concentration of 50 ppm. Additionally, the effect of size and concentration on the inhibition should be considered cautiously in case that the aggregation of particles occurred seriously so that the size of individual particles was increased in aquatic solution.

Development of a WWTP influent characterization method for an activated sludge model using an optimization algorithm

  • You, Kwangtae;Kim, Jongrack;Pak, Gijung;Yun, Zuwhan;Kim, Hyunook
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 2018
  • Process modeling with activated sludge models (ASMs) is useful for the design and operational improvement of biological nutrient removal (BNR) processes. Effective utilization of ASMs requires the influent fraction analysis (IFA) of the wastewater treatment plant (WWTP). However, this is difficult due to the time and cost involved in the design and operation steps, thereby declining the simulation reliability. Harmony Search (HS) algorithm was utilized herein to determine the relationships between composite variables and state variables of the model IWA ASM1. Influent fraction analysis was used in estimating fractions of the state variables of the WWTP influent and its application to 9 wastewater treatment processes in South Korea. The results of influent $S_s$ and $Xs+X_{BH}$, which are the most sensitive variables for design of activated sludge process, are estimated within the error ranges of 8.9-14.2% and 3.8-6.4%, respectively. Utilizing the chemical oxygen demand (COD) fraction analysis for influent wastewater, it was possible to predict the concentrations of treated organic matter and nitrogen in 9 full scale BNR processes with high accuracy. In addition, the results of daily influent fraction analysis (D-IFA) method were superior to those of the constant influent fraction analysis (C-IFA) method.

Wastewater Treatment by Microorganism (미생물에 의한 발효처리)

  • ;Kunisuke Ichikawa
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1980
  • The process of biological treatment of organic wastewater is principally associated with those of self-purification in the natural water environment. The treatment system has e intensive function of stabilizing wastewater more effectively than in natural water, which is like natural water concentrated in a small space. Biological treatment of wastewater involves activated sludge and various modified process, trickling filter, rotating disk, oxidation ditch, etc. for aerobic decomposition and anaerobic processes such as anaerobic decomposition and methane fermentation. The basic characteristic of these processes is the use of mixed culture for the conversion of pollutants. This review forcuses on the various kinds of microorganisms related to each treatment processes. Kinetic analysis of the activated sludge process is discussed in order to understand the basis of control and maintenance of the biological treatment process.

  • PDF

Estimation of Acidic Wastewater Toxicity on the Activated Sludge (활성슬러지에 미치는 산폐수의 독성도 예측)

  • Choi, Kwang-Soo;Ko, Joo-Hyung;Jang, Won-Ho;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2175-2185
    • /
    • 2000
  • Respiration rate should be a reasonable state variable for the activated sludge and could be used to simulate the performance of the activated sludge process. Toxic materials are classified into three groups, competitive, noncompetitive and uncompetitive. They increase/decrease the half saturation coefficient or specific growth rate. that means decreasing of the substrate removal capacity. In this research, a pilot-scale activated sludge process was operated under extended aeration method, and a representative noncompetitive inhibitor, acidic wastewater was applied to establish a respirometry-based toxicity model. Using this model. the correlation coefficient between measured and calculated respiration rate was 0.96 when acidic wastewater(pH 3.9~5.5) was introduced continuously to the aeration tank. Even though respiration rate was decreased by toxic effect of acidic wastewater, effluent substrate concentration represented to COD was deteriorated just a little bit. It might be caused by the low ratio of readily biodegradable substrate in the input substrate. Reduction of respiration rate by decreasing of input substrate concentration was much lower than that by acidic wastewater, and hence it was estimated that the possibility of false toxic alarm caused by decreasing of substrate concentration should be low.

  • PDF

A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria (호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구)

  • Bae, Yoon-Sun;Kim, Soon-Young;Nam, Duck-Hyun;Park, Chul-Hwi;Kim, Jin-Su;Takada, Kazu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

Appropriate Sewerage Systems for Korea (우리나라 적합 하수도시설 및 관리방안)

  • 이상은
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.37-52
    • /
    • 1992
  • Since the first sewage treatment plant was constructed in 1976, the sewerage systems of Korea have been rapidly expanded. As of the end of 1991, 22 sewage treatment plants with total capacity of 5.4 million tons/day are in operation which is equivalent of 3395 total daily sewage generation. Total extension of sewer 39.534 km in 1990 which is 55% of the target extension for the year 2001. However, the most sewage treatment plants employ activated sludge process which may not be suitable for medium and/or small scale plants. The poor existing sewer systems do not effectively collect and transport sewage to adversely affect the function of sewage treatment plant. To select the appropriate treatment system, the cities are classified into 3 categories such as large and medium size inland cities, small size cities and coastal cities. Considering the criteria suggested during this study, appropriate treatment processes were selected for each category. Conventional activated sludge process and step aeration process were found to be the most appropriate for big inland cities while biological nutrient removal processes should be considered for the cities discharge the effluent to lakes or reservoirs. RBC or Oxidation Ditch process might be appropriate for the medium size cities while several processes which do not require skilled operation and maintenance were suggested for the small cities. Ocean discharge after primary treatment can be considered for some east coast cities, Appropriate methodology to rehabilitate the existing sewers and strategy to convert combined sewer system to separate sewer system were proposed. This paper also include the appropriate management system for industrial wastewater, sludge and nightsoil.

  • PDF