• Title/Summary/Keyword: Activated oxygen

Search Result 726, Processing Time 0.023 seconds

Inhibitory Activity of Nitric Oxide Synthase and Peroxynitrite Scavenging Activity of Extracts of Perilla frutescens (들깨 잎 추출물의 Nitric Oxide Synthase 저해활성 및 Peroxynitrite 소거활성)

  • Kim, Jae-Yeon;Kim, Ji-Sun;Jung, Chan-Sik;Jin, Chang-Bae;Ryu, Jae-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.2 s.149
    • /
    • pp.170-175
    • /
    • 2007
  • Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO$^-$), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. We tried to evaluate the effects of two kinds of varieties of Perilla frutescens var japnica Hara on the NO production in lipopolysaccharide (LPS)-activated microglia. The perilla cultivars of Namcheondeulkkae (NC) and Boradeulkkae (BR) were developed by pure line from the local variety and by a cross between 'deulkkae' and 'chajogi', respectively. Spirit, hexane, chloroform and butanol fractions of the leaves of NC and BR inhibited the production of NO in LPS-activated microglia. The fractions of BR showed stronger activity than NC and the spirit extracts was the most potent in both cultivars. The solvent fractions of BR suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells. Moreover, the extracts of NC and BR showed the activity of peroxynitrite scavenging in cell free bioassay system. These results imply that Namcheondeulkkae and Boradeulkkae might have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

Application of Biological Activated Carbon Process for Water Quality Improvement of Stagnant Stream Channels

  • Lee, Jae-Ho;Park, Jeung-Jin;Park, Tae-Joo;Byun, Im-Gyu
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.309-316
    • /
    • 2014
  • The water quality improvement of golf course ponds, as representative stagnant stream channels, was evaluated by applying a biological activated carbon (BAC) process composed of four consecutive activated carbon reactors. The study was performed from autumn to winter in order to evaluate the feasibility of the BAC process under low temperature conditions. In the study, water quality of pond A (target pond) and pond B (reference pond) were monitored. Pond water was pumped into the BAC process, and was then returned to the pond after treatment. The optimal conditions were determined to be 2 hr of empty bed contact time (EBCT) at a temperature above $4^{\circ}C$, in which improvements of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) of pond A compared to pond B were 3.62%, 3.48% and 1.81%, respectively. On the other hand, as the temperature was below $4^{\circ}C$, some degree of water quality improvement was achieved even when EBCT were 1 or 0.5 hr, suggesting that the BAC process can be successfully applied for the improvement of pond water quality in winter months. The values of biomass concentration and microorganism activity in each condition were highest where 2 hr of EBCT was applied at a temperature above $4^{\circ}C$, but values were similar throughout all treatment conditions, and thus, adsorption is considered to be the dominant factor affecting process efficiency. From the denaturing gel gradient electrophoresis (DGGE) results, no significant differences were observed among the activated carbon reactors, suggesting that the number of reactors in the system could be decreased for a more compact application of the system.

A Study on the COD Removal in the Paste-board Wastewater by Activated Sludge Process (활성오니법에 의한 판지폐수중의 COD 제거에 관한 연구)

  • 도갑수;김영운
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.3
    • /
    • pp.28-35
    • /
    • 1985
  • As the paper industry consumes much water in process and discharge wastewater containing suspended solid and COD(chemical oxygen demand), relevant law against this discharge has been set up to limit the total containment of COD in discharge. This study has been carried out to improve the treatment method for the soluble COD in wastewater produced during the process of paste-board production, which is made of semichemical pulp and waste paper. Applicated methods are, O$_2$AS : O$_2$ activated sludge process DAS : Deep well activated sludge process SAS : standard activated sludge process and proper combination of DAS and SAS 1) As a result of this experiment, we get the following conclusion between in COD sludge loading "X" and COD removable rate in the process of treating waste-water. COD removable rate(%)=(0.778+0.0146/X)${\times}$100(%)……(7) 2) In case that the COD sludge loading is high, it has been cleared out that the COD removable rate shall become low due to unknown unsoluble substances contained in the process. Meanwhile, to increase the efficiency rate of treatment, it is thought to be necessary, to provide long-time contacts with activated sludge. 3) Once the COD of original waste-water and the target COD of treated water are decided, COD sludge loading is obtained from equation(7), and capacity of aeration tank in the effective systems such as O$_2$AS, DAS, to bet the required COD removable rate can be decided. Therefore the choice among SAS, O$_2$AS, DAS methods is made in consideration of required COD removable rate and allowable installation area. 4) In the sedimentation tank with sludge bulking, it is possible to increase the COD removable rate by 3~7% but still there exist many obstacles to manage this operation.

  • PDF

A study on reduction of excess sludge in activated sludge system from a petrochemical plant using electro fenton process (전기펜톤공정을 이용한 석유화학공장 폐활성슬러지의 감량화 가능성 평가)

  • Chung, Chong Min;Kim, Kyung Il;Shim, Natalia;Park, Chul Hee;Lee, Sang Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.669-678
    • /
    • 2009
  • The reduction of excess activated sludge from petrochemical plant was investigated by the electro fenton (E-Fenton) process using electrogenerated hydroxyl radicals which lead to mineralization of activated sludge to $CO_2$, water and inorganic ions. Factors affecting the disintegration efficiency of excess activated sludge in E-Fenton process were examined in terms of five criteria: pH, $H_2O_2/Fe^{2+}$ molar ratio, current density, initial MLSS (mixed liquid suspended solids) concentration, $H_2O_2$ feeding mode. TSS total suspended solid and $TCOD_{cr}$ reduction rate increased with the increasing $H_2O_2/Fe^{2+}$ molar ratio and current density until 42 and $6.7 mA/cm^2$, respectively but further increase of $H_2O_2/Fe^{2+}$ molar ratio and current density would reduce the reduction rate. On the other hand, as expected, increasing pH and initial MLSS concentration of activated sludge decreas TSS and $TCOD_{cr}$ reduction rate. The E-Fenton process was gradually increased during first 30 minutes and then linearly proceed till 120 minutes. The optimal E-Fenton condition showed TSS reduction rate of 62~63% and $TCOD_{cr}$ (total chemical oxygen demand) reduction rate of 55~56%. Molar ratio $H_2O_2/Fe^{2+} = 42$ was determined as optimal E-Fenton condition with initial $Fe^{2+}$ dose of 5.4 mM and current density of $6.7{\sim}13.3 mA/cm^2$, initial MLSS of 7,600 mg/L and pH 2 were chosen as the most efficient E-Fenton condition.

Performance Evaluation of Microorganisms Immobilized Reactive Capping Materials on Elution Blocking of Organic, Nitrogen, and Phosphorus Compounds (미생물이 고정화된 반응성 피복재의 유기물, 질소 및 인 용출 차단성능 평가)

  • Park, Hyungjin;Kim, Young-Kee
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.409-415
    • /
    • 2017
  • This study aims to evaluate the effect of capping materials on blocking pollutant elution from contaminated sediment to water body. Experiments were carried out under conditions in which the elution rate was intensified artificially using compost with high concentration of organic compound and nutrient salts instead of sediments. Activated carbon (AC), modified activated carbon (MAC), P. putida immobilized activated carbon (PBAC) and effective microorganisms immobilized activated carbon (EBAC) were used as capping materials. Zeolite (ZT) and two kinds of commercially available microorganisms immobilized zeolite products (ZC, ZN) were used for comparison experiment. The elution rate of organic compound, nitrogen and phosphorus were compared with that of control experiment. The experiments were conducted for 56 days. Concentrations of chemical oxygen demand, total nitrogen, and total phosphorus were measured to use the comparison of release rate of organic compound, nitrogen and phosphorus. From the experimental results, AC based materials showed better performance to block the elution of organic compound and nitrogen than ZT based materials. Although ZT based materials were more effective than AC and PBAC to block phosphorus, MAC and EBAC showed the best performance of phosphorus elution blocking among the all candidate materials. In conclusion, EBAC is considered as the most effective capping materials, because organic compound, nitrogen and phosphorus will be degraded continuously by EM in the long term.

Genipin Selectively Inhibits TNF-${\alpha}$-activated VCAM-1 But Not ICAM-1 Expression by Upregulation of PPAR-${\gamma}$ in Human Endothelial Cells

  • Jung, Seok-Hwa;Mun, Lidiya;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;Kwak, Jong-Hwan;Lee, Dong-Ung;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • Vascular inflammation process has been suggested to be an important risk factor in the development of atherosclerosis. Recently we reported that induction of peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) selectively inhibits vascular cell adhesion molecule-1 (VCAM-1) but not intercellular cell adhesion molecule-1 (ICAM-1) in tumor necrosis factor (TNF)-${\alpha}$-activated human umbilical vein endothelial cells (HUVEC). In this study, we investigated whether genipin inhibits expression of cellular adhesion molecules, which is relevant to inflammation. Pretreatment with genipin reduced reactive oxygen species (ROS) production and expression of VCAM-1, but not ICAM-1 in TNF-${\alpha}$-activated HUVEC. Genipin dose- and time-dependently increased PPAR-${\gamma}$ expression and inhibited TNF-${\alpha}$-induced phosphorylation of Akt and PKC with different degrees. Finally, genipin prevented TNF-${\alpha}$-induced adhesion of U937 monocytic cells to HUVEC. Taken together, these results indicate that upregualtion of PPAR-${\gamma}$ by genipin selectively inhibits TNF-${\alpha}$-induced expression of VCAM-1, in which regulation of Akt and/or PKC play a key role. We concluded that genipin can be used for the treatment of cardiovascular disorders such as atherosclerosis.

SO2 Adsorption Characteristics of PAN-based Activated Carbon Fiber Impregnated with Palladium and Gold Nanoparticles (팔라듐과 금 나노입자를 첨착한 PAN계 활성탄소섬유의 SO2 흡착특성)

  • Lee, Jin-Jae;Jun, Moon-Gue;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.467-474
    • /
    • 2007
  • The palladium and gold nanoparticles containing PAN-based active carbon fiber (ACF) with a high specific surface area were prepared. Using the BET, TEM, FE-SEM, and XPS, their specific surface area and pore volume, pore structure, and the change in surface oxygen groups with time were analyzed and $SO_2$ adsorption performances were investigated. Because of the impregnating process, the micropore volume was mostly decreased from 95.5% to 30.5~43.7% compared with the total pore volume. And the change in surface oxygen groups with time was higher for the metal salt than the nanoparticles. Also, $SO_2$ breakthrough time of PAN-ACFs impregnated with Au nanoparticles and metal salts did not change compared with that of the non-impregnated PAN-ACF. But the PAN-ACF impregnated with Pd nanoparticles (100 ppm) showed good $SO_2$ adsorption performance as the breakthrough time of 880 sec. These results indicated that the $SO_2$ adsorption performance depended on the change in surface oxygen groups with time and the moderate impregnation of Pd nanoparticles on the PAN-ACF caused the increase in the $SO_2$ adsorption performance by a catalytic action.

Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal (연속 회분식 반응기에서 최적 질소 제거를 위한 최적 궤적 찾기와 재최적화)

  • Kim, Young-Whang;Yoo, ChangKyoo;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This article aims to optimize the nitrogen removal of a sequencing batch reactor (SBR) through the use of the activated sludge model and iterative dynamic programming (IDP). Using a minimum batch time and a maximum nitrogen removal for minimum energy consumption, a performance index is developed on the basis of minimum area criteria for SBR optimization. Choosing area as the performance index makes the optimization problem simpler and a proper weighting in the performance index makes it possible to solve minimum time and energy problem of SBR simultaneously. The optimized results show that the optimal set-point of dissolved oxygen affects both the total batch time and total energy cost. For two different influent loadings, IDP-based SBR optimizations suggest each supervisory control of batch scheduling and set-point trajectory of dissolved oxygen (DO) concentration, and can save 20% of the total energy cost, while meeting the treatment requirements of COD and nitrogen. Moreover, it shows that the re-optimization of IDP within a batch can solve the modelling error problem due to the influent loading changes, or the process faults.

Adsorption of Ruthenium on the alkaline Earth Metal Compounds (알카리토금속 화합물에 의한 루테늄의 흡착)

  • 류경옥;문세기;이근범
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 1982
  • Many materials such as silica gel, metallic oxide, activated alumina and alkaline earth metal carbonates were employed as filter media for gaseous oxides of ruthenium volatilized during high level radioactive waste processing. The adsorption efficiency of ruthenium on these materials was evaluated. For the purpose of observing behavior of ruthenium oxides, thermogravimetric analysis of ruthenium oxide in a stream of oxygen was carried out. The rate of volatilization was proportional to the square root of oxygen partial pressure, and increased exponentially with temperature. At $650^{\circ}C$, gaseous ruthenium oxides showed a strongly marked effect of deposition. Of all the materials available, calcium oxide proved to be the best that could be used to adsorb ruthenium.

  • PDF

Partial Oxidation of Methane over Ni/SiO2

  • Roh, Hyun-Seog;Dong, Wen-Sheng;Jun, Ki-Won;Liu, Zhong-Wen;Park, Sang-Eon;Oh, Young-Sam
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.669-673
    • /
    • 2002
  • Ni catalyst (Ni: 15 wt%) supported on precalcined SiO2 has been investigated in reforming reactions of methane to synthesis gas. The catalyst exhibited fairly good activity and stability in partial oxidation of methane (POM), whereas it deactivated in steam reforming of methane (SRM). Pulse reaction results of CH4, O2, and CH4/O2 revealed that Ni/SiO2 has high capability to dissociate methane. The results also revealed that both CH4 and O2 are activated on the surface of metallic Ni, and then surface carbon species react with adsorbed oxygen to produce CO and CO2 depending on the bond strength of the oxygen species on the catalyst surface.