• Title/Summary/Keyword: Activated dynamics

Search Result 79, Processing Time 0.025 seconds

A study on the optimal ventilation and smoke exhaust systems in case of fire in subway stations installed with PSD (PSD가 설치된 지하철 역사 내 화재 시 최적 배연시스템 연구)

  • Kim, Hyo-Gyu;Yoo, Ji-Oh;Kim, Doo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.527-539
    • /
    • 2018
  • The subway used by many passengers is required to maintain a safe and comfortable environment and PSD (Platform Screen Door) must be installed in the platform after reinforcing the standard in 2003. In the previous research, in case of subway fire to control it, it is necessary to design the optimal ventilation and smoke exhaust system according to equipment capacity of the smoke exhaust system. Therefore, in this study, based on the results of previous research, three-dimensional numerical analysis was performed for the CO gas and smoke flow by the subway ventilation system in case of platform fire. As a result of this study, it was found that in case of emergency, if only the upper-level smoke exhaust system is activated, the risk of evacuation is high due to CO gas (653.8 ppm) and smoke concentration ($768.4mg/m^3$). And when all the smoke exhaust systems are activated and only the fire side PSD is opened, CO gas (36.0 ppm) and smoke concentration ($26.2mg/m^3$) are detected and the propagation range of smoke flow was reduced. When all the smoke exhaust systems are activated and only the fire side PSD is closed, it was analyzed as the most effective ventilation mode in the evacuation environment due to the absence of smoke-recirculation.

Small molecule natural compound agonist of SIRT3 as a therapeutic target for the treatment of intervertebral disc degeneration

  • Wang, Jianle;Nisar, Majid;Huang, Chongan;Pan, Xiangxiang;Lin, Dongdong;Zheng, Gang;Jin, Haiming;Chen, Deheng;Tian, Naifeng;Huang, Qianyu;Duan, Yue;Yan, Yingzhao;Wang, Ke;Wu, Congcong;Hu, Jianing;Zhang, Xiaolei;Wang, Xiangyang
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.5.1-5.14
    • /
    • 2018
  • Oxidative stress-induced mitochondrial dysfunction is implicated in the pathogenesis of intervertebral disc degeneration (IVDD). Sirtuin 3 (SIRT3), a sirtuin family protein located in mitochondria, is essential for mitochondrial homeostasis; however, the role of SIRT3 in the process of IVDD has remained elusive. Here, we explored the expression of SIRT3 in IVDD in vivo and in vitro; we also explored the role of SIRT3 in senescence, apoptosis, and mitochondrial homeostasis under oxidative stress. We subsequently activated SIRT3 using honokiol to evaluate its therapeutic potential for IVDD. We assessed SIRT3 expression in degenerative nucleus pulposus (NP) tissues and oxidative stress-induced nucleus pulposus cells (NPCs). SIRT3 was knocked down by lentivirus and activated by honokiol to determine its role in oxidative stress-induced NPCs. The mechanism by which honokiol affected SIRT3 regulation was investigated in vitro, and the therapeutic potential of honokiol was assessed in vitro and in vivo. We found that the expression of SIRT3 decreased with IVDD, and SIRT3 knockdown reduced the tolerance of NPCs to oxidative stress. Honokiol ($10{\mu}M$) improved the viability of NPCs under oxidative stress and promoted their properties of anti-oxidation, mitochondrial dynamics and mitophagy in a SIRT3-dependent manner. Furthermore, honokiol activated SIRT3 through the AMPK-PGC-$1{\alpha}$ signaling pathway. Moreover, honokiol treatment ameliorated IVDD in rats. Our study indicated that SIRT3 is involved in IVDD and showed the potential of the SIRT3 agonist honokiol for the treatment of IVDD.

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.

PERFORMANCE EVALUATION OF PASSENGERS' EVACUATION FOR SMOKE-CONTROL MODES IN A SUBWAY STATION (지하역사 제연모드 승객피난 성능평가)

  • Park, Won-Hee;Chang, Hee-Chul;Jung, Woo-Sung;Lee, Han-Su
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.8-12
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by building EXODUS V.4.0.

Dynamical Analysis of Cellular Signal Transduction Pathways with Nonlinear Systems Perspectives (비선형시스템 관점으로부터 세포 신호전달경로의 동역학 분석)

  • Kim Hyun-Woo;Cho Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1155-1163
    • /
    • 2004
  • Extracellular signal-regulated kinase (ERK) signaling pathway is one of the mitogen-activated protein kinase (MAPK) signal transduction pathways. This pathway is known as pivotal in many signaling networks that govern proliferation, differentiation and cell survival. The ERK signaling pathway comprises positive and negative feedback loops, depending on whether the terminal kinase stimulates or inhibits the activation of the initial level. In this paper, we attempt to model the ERK pathway by considering both of the positive and negative feedback mechanisms based on Michaelis-Menten kinetics. In addition, we propose a fraction ratio model based on the mass action law. We first develop a mathematical model of the ERK pathway with fraction ratios. Secondly, we analyze the dynamical properties of the fraction ratio model based on simulation studies. Furthermore, we propose a concept of an inhibitor, catalyst, and substrate (ICS) controller which regulates the inhibitor, catalyst, and substrate concentrations of the ERK signal transduction pathway. The ICS controller can be designed through dynamical analysis of the ERK signaling transduction pathway within limited concentration ranges.

Core muscle Strengthening Effect During Spine Stabilization Exercise

  • Han, Kap-Soo;Nam, Hyun Do;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2413-2419
    • /
    • 2015
  • Core spinal muscles are related to trunk stability and assume the main role of stabilizing the spine during daily activities; strengthening of core muscles around the spine can therefore reduce the chance of back pain. The objective of the study was to investigate the effect of core muscle strengthening in the spine during spine stabilization exercise using a whole body tilt device. To achieve this, a validated musculoskeletal (MS) model of the whole body was used to replicate the input motion from the whole body tilting exercise. An inverse dynamics analysis was executed to estimate spine loads and muscle forces depending on the tilting angles of the exercise device. The activation of long and superficial back muscles such as the erector spinae (iliocostalis and longissimus) were mainly affected by the forward direction (-40°) of the tilt, while the front muscles (psoas major, quadratus lumborum, and external and internal obliques) were mainly affected by the backward tilting direction (40°). Deep muscles such as the multifidi and short muscles were activated in most directions of the rotation and tilt. The backward directions of the tilt using this device could be carefully applied for the elderly and for rehabilitation patients who are expected to have less muscle strength. In this study, it was shown that the spine stabilization exercise device can provide considerable muscle exercise effect.

Simulation Model Development of Korean LVRT capability for evaluating the WTG-interconnected Power Systems Performance (풍력발전연계 전력계통의 성능평가를 위한 국내 풍력발전기 LVRT 전사모델 개발)

  • Han, Jun-Bum;Son, Hyeok-Jin;Kook, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1814-1821
    • /
    • 2012
  • As a new Korean grid code which includes LVRT requirement to wind farm of which capacity is greater than 20MW is activated in 2012, this paper developed the analytical model of the Korean LVRT for the simulation based feasibility study of the wind farm interconnection into power systems. The developed model of the LVRT is verified by applying it into the performance evaluation of the wind farm interconnected power systems and the effect of Korean LVRT is analyzed through case studies considering typical disturbances of power systems.

The Design Conditions and the Initial Operation Results of 1 Ton/Day Class Dry Feeding Coal-Gasification System (건식 석탄공급형 1 Ton/Day급 가스화시스템 설계조건 및 시운전결과)

  • Seo, Hai-Kyung;Chung, Jae-Hwa;Ju, Ji-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.352-359
    • /
    • 2009
  • KEPRI is developing a Korean type coal-gasification system and the scale is 20 ton/day. Prior to this pilot plant, a 1 ton/day class gasification system will be used for pre-testing of several coal types. This paper introduces the configuration and design conditions of this 1 ton/day class system, presenting the gas/coal ratio, oxygen/coal ratio, cold gas efficiency, CFD analysis of gasifier, and others. The existing combustion furnace for residual oil was retrofitted as a coal gasifier and a vertical and down-flow type burner was manufactured. Ash removal is carried out through a water quencher and a scrubber following the quencher, and the sulfur is removed by adsorption in the activated carbon tower. The gas produced from the gasifier is burned at the flare stack. In this paper, the results of design conditions and initial operation conditions of I ton/day gasification system are compared together.

Numerical study for fluid-structure interaction of blood flow in TPLS (박동형 인공심폐기에서의 혈류의 고체-유체 상호작용에 대한 수치적 연구)

  • Jung G. S.;Seong H. C.;Shim E. B.;Ko H. J.;Min B. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.705-706
    • /
    • 2002
  • Hemodynamics of the TPLS(Twin Pulse Life Support System) is numerically investigated to delineate the possibility of hemolysis in blood. Computational method employing finite element algorithm is utilized to solve the blood flow of the sac squeezed by moving actuator. We assume that the blood flow interacts with the sac material which is activated by the rigid body motion of the actuator. Valve dynamics at the ends of the sac is simplified as on/off type motion. We compute the transient viscous flow in the two-dimensional geometry of the blood sac. Incompressible laminar flow is simulated on the assumption of Newtonian fluid. Blood velocity has a step gradient near the throat of the sac formed by the moving actuator. According to the decrease of the gap size of blood passage, the magnitude of shear stress in the blood is dramatically increased. Numerical solutions show that the maximum value of shear stress in the blood flow in TPLS is relatively smaller than that of the roller type ECLS.

  • PDF

Dynamic Stability Analysis of the Nuclear Fuel Rod Affected by the Swirl Flow due to the Flow Mixer (유동혼합기에 의한 회전유동을 고려한 핵연료 봉의 동적 안정성해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.641-646
    • /
    • 2008
  • Long and slender body with or without flexible supports under severe operating condition can be unstabilized even by the small cross flow. Turbulent flow mixer, which actually increases thermal-hydraulic performance of the nuclear fuel by boosting turbulence, disturbs the flow field around the fuel rod and affects dynamic behavior of the nuclear fuel rods. Few studies on this problem can be found in the literature because these effects depend on the specific natures of the support and the design of the system. This work shows how the dynamics of a multi-span fuel rod can be affected by the turbulent flow, which is discretely activated by a flow mixer. By solving a state-space form of the eigenvalue equation for a multi-span fuel rod system, the critical velocity at which a fuel rod becomes unstable was established. Based on the simulation results, we evaluated how stability of a multi-spanned nuclear fuel rod with mixing vanes can be affected by the coolant flow in an operating reactor core.

  • PDF