Browse > Article
http://dx.doi.org/10.5370/JEET.2015.10.6.2413

Core muscle Strengthening Effect During Spine Stabilization Exercise  

Han, Kap-Soo (Division of Biomedical Engineering, Chonbuk National University)
Nam, Hyun Do (Department of Electronics Engineering, Dankook University)
Kim, Kyungho (Department of Electronics Engineering, Dankook University)
Publication Information
Journal of Electrical Engineering and Technology / v.10, no.6, 2015 , pp. 2413-2419 More about this Journal
Abstract
Core spinal muscles are related to trunk stability and assume the main role of stabilizing the spine during daily activities; strengthening of core muscles around the spine can therefore reduce the chance of back pain. The objective of the study was to investigate the effect of core muscle strengthening in the spine during spine stabilization exercise using a whole body tilt device. To achieve this, a validated musculoskeletal (MS) model of the whole body was used to replicate the input motion from the whole body tilting exercise. An inverse dynamics analysis was executed to estimate spine loads and muscle forces depending on the tilting angles of the exercise device. The activation of long and superficial back muscles such as the erector spinae (iliocostalis and longissimus) were mainly affected by the forward direction (-40°) of the tilt, while the front muscles (psoas major, quadratus lumborum, and external and internal obliques) were mainly affected by the backward tilting direction (40°). Deep muscles such as the multifidi and short muscles were activated in most directions of the rotation and tilt. The backward directions of the tilt using this device could be carefully applied for the elderly and for rehabilitation patients who are expected to have less muscle strength. In this study, it was shown that the spine stabilization exercise device can provide considerable muscle exercise effect.
Keywords
Core muscle strengthening; Spine stabilization exercise device; Whole body tilt; Musculoskeletal model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Panjabi, M.M., Clinical spinal instability and low back pain. Journal of Electromyography and Kinesiology 13(2003), 371-379.   DOI
2 Hides, J.A., Stokes, M.J., Saide, M., Jull, G.A., Cooper, D.H., Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute / subacute low back pain. Spine 19(1994), 165-172.   DOI
3 J.S. Petrofsky, M. Laymon and M. Cuneo, A bidirectional resistance device for increasing the strength and tone in upper body core muscles and chest girth, JAppl Res 5(2005), 553-559.
4 R.J. Baker and D. Patel, Lower back pain in the athlete: common conditions and treatment, Prim Care 32 (2005), 201-229.   DOI
5 A. Imai, K. Kaneoka, Y. Okubo, I. Shiina, M. Tatumura, S. Izumiand and H. Shiraki, Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface, J Orthop Sports Phys Ther 40(2010), 369-375.   DOI
6 C. Anders, G. Brose, G.O. Hofmann and H.C. Scholle, Evaluation of the EMG-force relationship of trunk muscles during whole body tilt, J Biomech 41(2008), 333-339.   DOI
7 C.H. Yu, S.H. Shin, K. Kim, H.C. Jeong and T.K. Kwon, Activity Analysis of Trunk and Leg Muscles During Whole Body Tilt Exercise, Bio-Med Mater Eng 24(2014), 245-254.
8 M. De zee, L. Hansen, C. Wong, J. Rasmussen and E.B. Simonsen, A generic detailed rigid-body lumbar spine model, J Biomech 40(2007), 1219-1227.   DOI
9 K.S. Han, T. Zander, W.R. Taylor and A. Rohlmann, An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces, Med Eng Phys 34(2012), 709-716.   DOI
10 K.S. Han, A. Rohlmann, K. Kim, K. W. Cho and Y. H. Kim, Effect of ligament stiffness on spinal loads and muscle forces in flexed positions, International Journal of Precision Engineering and Manufacturing 13(2012), 2233-38.   DOI
11 K. S. Han, T. Zander, W. R. Taylor, A. Rohlmann, Lumbar spinal loads vary with body height and weight, Med Eng and Phys 35(2013), 969-77   DOI
12 D. A. Winter, Biomechanics and motor control of human movement, New York: John Wiley & Sons, 1990.
13 L. Hansen, M. Dezee, J. Rasmussen, T.B. Andersen, C. Wong and E.B. Simonsen, Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling, Spine 31(2006), 1888-1899.   DOI
14 L.P. Nolte, M.M. Panjabi and T.R. Oxland, Biomechanical properties of lumbar spinal ligaments. In Heimke, G., Soltesz, U. and Lee, A.J.C., eds. Clinical Implant Materials, pp. 663-668 (Elsevier, Heidelberg, 1990).
15 T. Zander, A. Rohlmann and G. Bergmann, Influence of ligament stiffness on the mechanical behavior of a functional spinal unit, J Biomech 37(2004), 1107-1111.   DOI
16 J. Rasmussen, M. Damsgaard and M. Voigt, Muscle recruitment by the min/max criterion - a comparative numerical study, J Biomech 34(2001), 409-415.   DOI
17 Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. (2006) Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice and Theory 14: 1100-1111.   DOI
18 Nuzzo JL, McCaulley GO, Cormie P, Cavill MJ, McBride JM. Trunk muscle activity during stability ball and free weight exercises. J Strength Cond Res 22(2008), 95-102.   DOI
19 Durall CJ, Udermann BE, Johansen DR, Gibson B, Reineke DM, Reuteman P. The effects of preseason trunk muscle training on low-back pain occurrence in women collegiate gymnasts. J Strength Cond Res 23(2009), 86-92.   DOI
20 Hodges, P.W., Richardson, C.A., Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine 21(1996), 2640-2650.   DOI