• Title/Summary/Keyword: Activated Sludge

Search Result 789, Processing Time 0.03 seconds

Assessment of Best Available Technology of Wastewater Treatment Facilities in Petrochemical Basic Compound Manufacturing and Plastics and Synthetic Resins Manufacturing (석유화학계 기초화합물 제조시설과 합성수지 및 기타 플라스틱물질 제조시설의 폐수처리시설 BAT평가)

  • Kim, Youngnoh;Lim, Byungjin;Kwon, Osang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for petrochemical basic compound manufacturing (PBCM) and plastics and synthetic resins manufacturing (PSRM) industry. Wastewater discharged from the each category contains high concentration of COD and toluene. Eighteen sites were surveyed and wastewater qualities were analyzed. Six and two different technologies were applied to the PBCM and PSRM industry for the end-of-pipe treatment process, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options: typical activated-sludge process + sand filtration + activated carbon adsorption (PBCM) and wet oxidation + chemical precipitation + typical activated-sludge process + chemical precipitation (PSRM) were selected as the BAT for each industry.

Recovering the Energy Potential of Sewage as Approach to Energy Self-Sufficient Sewage Treatment (하수처리장 에너지 자립화를 위한 하수 에너지 잠재력 회수 기술)

  • Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.121-131
    • /
    • 2018
  • Domestic sewage treatment plants (STPs) consume about 0.5 % of total electric energy produced annually, which is equivalent to 207.7 billion Korean won per year. To minimize the energy consumption and as a way of mitigating the depletion of energy sources, the sewage treatment strategy should be improved to the level of "energy positive". The core processes for the energy positive sewage treatment include A-stage for energy recovery and B-stage for energy-efficient nitrogen removal. The integrated process is known as the A/B-process. In A-stage, chemically enhanced primary treatment (CEPT) or high rate activated sludge (HRAS) processes can be utilized by modifying the primary settling in the first stage of sewage treatment. CEPT utilizes chemical coagulation and flocculation, while HRAS applies returned activated sludge for the efficient recovery of organic contents. The two processes showed organic recovery efficiencies ranging from 60 to 70 %. At a given recovery efficiency of 80 %, 17.3 % of energy potential ($1,398kJ/m^3$) is recovered through the anaerobic digestion and combustion of methane. Besides, anaerobic membrane bioreactor (AnMBR) can recover 85% of organic contents and generate $1,580kJ/m^3$ from the sewage. The recovered energy is equal to the amount of energy consumption by sewage treatment equipped with anaerobic ammonium oxidation (ANAMMOX)-based B-stage, $810{\sim}1,620kJ/m^3$. Therefore, it is possible to upgrade STPs as efficient as energy neutral. However, additional novel technologies, such as, fuel cell and co-digestion, should be applied to achieve "energy positive" sewage treatment.

활성탄 담체가 포함된 Jet-Loop Reactor를 이용한 종합염색폐수처리

  • Park, Jong-Tak;Lee, Gil-Ho;Ryu, Won-Ryul;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.406-409
    • /
    • 2000
  • For the effective treatment of dye-processing wastewater, JLR(Jet-Loop Reactor) with active carbon supports were investigated. BOD removal efficiency was found as 99% when influent BOD concentration of dye-processing wastewater was 400 mg/L. $COD_{Mn}$ of effluent removal efficiencies were found as 86${\sim}$ 89% when these of activated sludge reactor were 62${\sim}$72%. Also, color removal efficiencies were found as 84${\sim}$87% when these of activated sludge reactor were 72%${\sim}$77%. After JLR with active carbon supports had been used, all of the $COD_{Mn}$, $COD_{Cr}$ and color removal efficiencies Increased when chemical precipitation was done. Consequently, JLR with active carbon supports was proved to be more excellent than the activated sludge reactor.

  • PDF