• Title/Summary/Keyword: Activated Carbon Fiber (ACF)

Search Result 114, Processing Time 0.022 seconds

Liquid Phase Adsorption of Activated Carbon Fibers (활성탄소섬유의 액상흡착)

  • Moon, Dong Cheul;Kim, Chang Soo;Park, Il Yeong;Kim, Mi Ran;Hong, Seung Soo;Lee, Kwang Ho;Lee, Chang Gi
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.573-583
    • /
    • 2000
  • Activated carbon fibers (ACFs) were prepared from various precursors of plantic, synthetic, and mixed fabrics of viscous rayon and cotton. Their adsorption performances of phenol and methylene blue in aqueous phase were evaluated through their adsorption isotherms, adsorption rates and breakthrough curves. The two adsorbates showed type I adsorption isotherm on ACFs. Adsorption rates to ACFs were 100 fold faster than to GAC. The effective diffusion coefficients of the adsorbates in ACFs were twenty fold greater than in GAC. The ACFs removed completely ten organic pollutants from a prepared water specimens through the 2nd column of a natural filtration method where 50 L of the water samples were treated.

  • PDF

Micropore Analysis and Adsorption Characteristics of Activated Carbon Fibers (활성탄소섬유의 미세기공 분석 및 흡착특성)

  • Moon, Dong-Cheul;Lee, Kwang-Ho;Kim, Chang-Soo;Kim, Do-Hyung;Kim, Mi-Ran;Shin, Chae-Ho;Park, II-Young;Nam, Seoung-Youl;Lee, Chang-Gi
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.89-95
    • /
    • 2000
  • Three grades of activated carbon fibers (ACFs) were prepared from various precursors of plantic, synthetic, and mixed fabrics of viscose rayon and cotton. The ACFs an exhibited type I isotherms on the adsorption of nitrogen or argon. Micropore analysis revealed that the ACFs have uniform micropore size distribution in which their peak diameters were in the range of $5.6{\pm}0.3{\AA}$. The BET surface area of ACFs up to $1600m^2g^{-1}$ was proportional to the adsorption capacity of iodine. The BET values of the ACFs prepared were proportional to the burn-off degree of the products.

  • PDF

Influence of Textural Structure by Heat-treatment on Electrochemical Properties of Pitch-based Activated Carbon Fiber (열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향)

  • Kim, Kyung Hoon;Park, Mi-Seon;Jung, Min-Jung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.598-603
    • /
    • 2015
  • In this study, electrochemical properties of pitch-based activated carbon fibers (ACFs) were investigated by different heat-treatment temperature of the pitch-based ACFs in order to improve the specific capacitance of electric double-layer capacitor (EDLC). The ACFs were prepared by different heat-treatment temperatures of 1050 and $1450^{\circ}C$, after activation with 4 M KOH at $800^{\circ}C$ using stabilized pitch fiber. The specific surface area of prepared ACFs increased from $828m^2/g$ to $987m^2/g$, also the micropore and mesopore volumes of prepared ACFs were increased. These results because pore was produced by desorbing oxygen and hydrogen elements within the ACFs, and pore size was increased by contraction ACFs by heat-treatment process. Because of the porous properties, the specific capacitance was increased from 73 F/g to 119 F/g using cyclic voltammetry with 1 M $H_2SO_4$ at scan rates of 5 mV/s.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.