• Title/Summary/Keyword: Action recognition

Search Result 405, Processing Time 0.027 seconds

Silhouette-Edge-Based Descriptor for Human Action Representation and Recognition

  • Odoyo, Wilfred O.;Choi, Jae-Ho;Moon, In-Kyu;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Extraction and representation of postures and/or gestures from human activities in videos have been a focus of research in this area of action recognition. With various applications cropping up from different fields, this paper seeks to improve the performance of these action recognition machines by proposing a shape-based silhouette-edge descriptor for the human body. Information entropy, a method to measure the randomness of a sequence of symbols, is used to aid the selection of vital key postures from video frames. Morphological operations are applied to extract and stack edges to uniquely represent different actions shape-wise. To classify an action from a new input video, a Hausdorff distance measure is applied between the gallery representations and the query images formed from the proposed procedure. The method is tested on known public databases for its validation. An effective method of human action annotation and description has been effectively achieved.

An Implementation of Taekwondo Action Recognition System using Multiple Sensing (멀티플 센싱을 이용한 태권도 동작 인식 시스템 구현)

  • Lee, Byong Kwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.436-442
    • /
    • 2016
  • There are a lot of sports when you left the victory and the defeat of the match the referee subjective judgment. In particular, TaeKwonDo pumse How accurate a given action? Is important. Objectively evaluate the subjective opinion of victory and defeat in a sporting event and the technology to keep as evidence is required. This study was implemented a system for recognizing Taekwondo executed through the number of motion recognition device. Step Sensor also used to detect a user's location. This study evaluated the rate matching the standard gesture data and the motion data. Through multiple gesture recognition equipment was more accurate assessment of the Taekwondo action.

A Deep Learning Algorithm for Fusing Action Recognition and Psychological Characteristics of Wrestlers

  • Yuan Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.754-774
    • /
    • 2023
  • Wrestling is one of the popular events for modern sports. It is difficult to quantitatively describe a wrestling game between athletes. And deep learning can help wrestling training by human recognition techniques. Based on the characteristics of latest wrestling competition rules and human recognition technologies, a set of wrestling competition video analysis and retrieval system is proposed. This system uses a combination of literature method, observation method, interview method and mathematical statistics to conduct statistics, analysis, research and discussion on the application of technology. Combined the system application in targeted movement technology. A deep learning-based facial recognition psychological feature analysis method for the training and competition of classical wrestling after the implementation of the new rules is proposed. The experimental results of this paper showed that the proportion of natural emotions of male and female wrestlers was about 50%, indicating that the wrestler's mentality was relatively stable before the intense physical confrontation, and the test of the system also proved the stability of the system.

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

A Bio-Inspired Modeling of Visual Information Processing for Action Recognition (생체 기반 시각정보처리 동작인식 모델링)

  • Kim, JinOk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.299-308
    • /
    • 2014
  • Various literatures related computing of information processing have been recently shown the researches inspired from the remarkably excellent human capabilities which recognize and categorize very complex visual patterns such as body motions and facial expressions. Applied from human's outstanding ability of perception, the classification function of visual sequences without context information is specially crucial task for computer vision to understand both the coding and the retrieval of spatio-temporal patterns. This paper presents a biological process based action recognition model of computer vision, which is inspired from visual information processing of human brain for action recognition of visual sequences. Proposed model employs the structure of neural fields of bio-inspired visual perception on detecting motion sequences and discriminating visual patterns in human brain. Experimental results show that proposed recognition model takes not only into account several biological properties of visual information processing, but also is tolerant of time-warping. Furthermore, the model allows robust temporal evolution of classification compared to researches of action recognition. Presented model contributes to implement bio-inspired visual processing system such as intelligent robot agent, etc.

Two-Stream Convolutional Neural Network for Video Action Recognition

  • Qiao, Han;Liu, Shuang;Xu, Qingzhen;Liu, Shouqiang;Yang, Wanggan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3668-3684
    • /
    • 2021
  • Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.

Human Action Recognition Based on 3D Human Modeling and Cyclic HMMs

  • Ke, Shian-Ru;Thuc, Hoang Le Uyen;Hwang, Jenq-Neng;Yoo, Jang-Hee;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.662-672
    • /
    • 2014
  • Human action recognition is used in areas such as surveillance, entertainment, and healthcare. This paper proposes a system to recognize both single and continuous human actions from monocular video sequences, based on 3D human modeling and cyclic hidden Markov models (CHMMs). First, for each frame in a monocular video sequence, the 3D coordinates of joints belonging to a human object, through actions of multiple cycles, are extracted using 3D human modeling techniques. The 3D coordinates are then converted into a set of geometrical relational features (GRFs) for dimensionality reduction and discrimination increase. For further dimensionality reduction, k-means clustering is applied to the GRFs to generate clustered feature vectors. These vectors are used to train CHMMs separately for different types of actions, based on the Baum-Welch re-estimation algorithm. For recognition of continuous actions that are concatenated from several distinct types of actions, a designed graphical model is used to systematically concatenate different separately trained CHMMs. The experimental results show the effective performance of our proposed system in both single and continuous action recognition problems.

A Tree Regularized Classifier-Exploiting Hierarchical Structure Information in Feature Vector for Human Action Recognition

  • Luo, Huiwu;Zhao, Fei;Chen, Shangfeng;Lu, Huanzhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1614-1632
    • /
    • 2017
  • Bag of visual words is a popular model in human action recognition, but usually suffers from loss of spatial and temporal configuration information of local features, and large quantization error in its feature coding procedure. In this paper, to overcome the two deficiencies, we combine sparse coding with spatio-temporal pyramid for human action recognition, and regard this method as the baseline. More importantly, which is also the focus of this paper, we find that there is a hierarchical structure in feature vector constructed by the baseline method. To exploit the hierarchical structure information for better recognition accuracy, we propose a tree regularized classifier to convey the hierarchical structure information. The main contributions of this paper can be summarized as: first, we introduce a tree regularized classifier to encode the hierarchical structure information in feature vector for human action recognition. Second, we present an optimization algorithm to learn the parameters of the proposed classifier. Third, the performance of the proposed classifier is evaluated on YouTube, Hollywood2, and UCF50 datasets, the experimental results show that the proposed tree regularized classifier obtains better performance than SVM and other popular classifiers, and achieves promising results on the three datasets.

Deep learning-based Human Action Recognition Technique Considering the Spatio-Temporal Relationship of Joints (관절의 시·공간적 관계를 고려한 딥러닝 기반의 행동인식 기법)

  • Choi, Inkyu;Song, Hyok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.413-415
    • /
    • 2022
  • Since human joints can be used as useful information for analyzing human behavior as a component of the human body, many studies have been conducted on human action recognition using joint information. However, it is a very complex problem to recognize human action that changes every moment using only each independent joint information. Therefore, an additional information extraction method to be used for learning and an algorithm that considers the current state based on the past state are needed. In this paper, we propose a human action recognition technique considering the positional relationship of connected joints and the change of the position of each joint over time. Using the pre-trained joint extraction model, position information of each joint is obtained, and bone information is extracted using the difference vector between the connected joints. In addition, a simplified neural network is constructed according to the two types of inputs, and spatio-temporal features are extracted by adding LSTM. As a result of the experiment using a dataset consisting of 9 behaviors, it was confirmed that when the action recognition accuracy was measured considering the temporal and spatial relationship features of each joint, it showed superior performance compared to the result using only single joint information.

  • PDF

A New Residual Attention Network based on Attention Models for Human Action Recognition in Video

  • Kim, Jee-Hyun;Cho, Young-Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.55-61
    • /
    • 2020
  • With the development of deep learning technology and advances in computing power, video-based research is now gaining more and more attention. Video data contains a large amount of temporal and spatial information, which is the biggest difference compared with image data. It has a larger amount of data. It has attracted intense attention in computer vision. Among them, motion recognition is one of the research focuses. However, the action recognition of human in the video is extremely complex and challenging subject. Based on many research in human beings, we have found that artificial intelligence-like attention mechanisms are an efficient model for cognition. This efficient model is ideal for processing image information and complex continuous video information. We introduce this attention mechanism into video action recognition, paying attention to human actions in video and effectively improving recognition efficiency. In this paper, we propose a new 3D residual attention network using convolutional neural network based on two attention models to identify human action behavior in the video. An evaluation result of our model showed up to 90.7% accuracy.