• Title/Summary/Keyword: Actinide(III)

Search Result 8, Processing Time 0.018 seconds

Selective Separation of Actinide(III) by a rPr-BTP/nitrobezene Extraction System (nPr-BTP/nitrobezene 추출 계에 의한 악티나이드(III)의 선택적 분리)

  • Lee, Eil-Hee;Lim, Jae-Kwan;Chung, Dong-Yong;Yang, Han-Beom;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.25-33
    • /
    • 2008
  • A selective separation of Actirlide(III) by a nPr-BTP/nitrobezene extraction system was studied. The nPr-BTP (2.6-Bis-(5.6-n-propyl-1.2.4-triazin-3-yl)-pyridine) of a environmentally -friendly CHN type was self-synthesized and its compatability with diluent and stability with nitric acid were investigated. At the 0.1M nPr-BTP/nitrobenzene-1M $HNO_3$ and O/A=2, extraction yields of Am used as a representative of Actinide(III) and Eu were about 85% and 8%, respectively, and the other RE elements such as Nd, Ce and Y were extracted less than 3% (separation factor of Am and Eu was about 60). Thus, there was no problems in the selective extraction of Actinide(III) from RE. The stripping yield of Am with 0.05M $HNO_3$ at O/A= 1, however, was about 43% and the maximum stripping yield was 65% at O/A=0.3. It is necessary to develop the stripping system including the stripping agent instead of nitric acid solution.

  • PDF

Extraction of Eu-152, Nd and Am-241 from the Simulated Liquid Wastes by Picolinamide$(C_8H_{17})$

  • Kwon, Seon-Gil;Lee, Eil-Hee;Yoo, Jae-Hyung;Park, Hyun-Soo;Kim, Jong-Seung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.498-505
    • /
    • 1999
  • Trivalent actinide-lanthanide group separation is difficult to perform on an industrial scale, because of the many drawbacks of the available chemical process. In this paper, picolinamide(C$_{8}$H$_{17}$) is synthesized and characterized, and extraction yields of Am-241, Eu-152 and Nd are determined in batch extraction experiments. In particular, the influence of the solvent is described. The extraction yields of Am-241, Eu-152 and Nd depended on the LiNO$_3$ concentration, the picolinamide(C$_{8}$H$_{17}$) concentration and the acidity. A favorable picolinamide(C$_{8}$H$_{17}$) concentration was found to be about 2M. The appropriate nitric acid concentration and LiNO$_3$ concentration were confirmed to be about 0.125M and 3M, respectively. The separation factor of Am and Eu was about 9.9 at optimum conditions. The picolinamide(C$_{8}$H$_{17}$) is a very promising extractant for the actinide(III)-lanthanides(III) separation.aration.aration.

  • PDF

Phosphate Sorption on Boehmite with Eu(III): P K-edge EXAFS Fingerprinting (뵈마이트 표면의 인산염 및 Eu(III) 수착: 인(P) X-선 흡수분석(EXAFS)에 의한 연구)

  • Yoon, Soh-Joung;Bleam, William F.
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.495-500
    • /
    • 2009
  • Actinide sorption to the geological materials can reduce the mobility and bioavailability of radionuclides released to the environment through the development of nuclear weapons and nuclear energy. Under circumneutral pH conditions, actinide sorption can be enhanced by phosphate anions sorbed on oxide mineral surfaces as indicated by the sorption of trivalent lanthanide ions ($Ln^{3+}$), the chemical analog for trivalent actinide ions ($Ac^{3+}$). In this paper, we examined a ternary sorption system of trivalent europium ions ($Eu^{3+}$) sorbed onto boehmite (${\gamma}$-AlOOH) surfaces pre-sorbed with phosphate anions (${PO_4}^{3-}$), using extended X-ray absorption fine structure (EXAFS) spectroscopy. In the Eu-$PO_4$-boehmite ternary sorption system, $EuPO_4$ surface precipitates were formed as implicated by Eu $L_{III}$-edge EXAFS spectroscopy. Phosphorus K-edge EXAFS fingerprinting indicated a bidentate mononuclear surface complex formation of phosphate sorbed on boehmite surfaces as well as $EuPO_4$ surface precipitate formation.

Speciation and Solubility of Major Actinides Under the Deep Groundwater Conditions of Korea

  • Dong-Kwon Keum;Min-Hoon Baik;Pil-Soo Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.517-531
    • /
    • 2002
  • The speciation and solubility of Am, Np, Pu and U have been analyzed by means of the geochemical code MUGREM, under the chemical conditions of domestic deep groundwater, in order to support the preliminary safety assessment for a Korean HLW disposal concept. Under the conditions of groundwaters studied, the stable solid phase is AmOHC $O_3$(s) or Am(OH)$_3$(s), soddyite((U $O_2$)$_2$ $SiO_2$.2$H_2O$) or N $a_2$ $U_2$ $O_{7}$ (c), Np(OH)$_4$(am), and Pu(OH)$_4$(am) for Am, U, Np, and Pu, respectively. The dominating aqueous species are as follows: the complexes of Am(III), Am(OH)$_2$$^{+}$ and Am(C $O_3$)$_2$$^{[-10]}$ , the complexes of U(VI), U $O_2$(OH)$_3$$^{[-10]}$ and U $O_2$(C $O_3$)$_3$$^{4-}$, the complexes of Np(IV), Np(OH)$_4$(aq) and Np(OH)$_3$C $O_3$, and the complexes of Pu(IV), Pu(OH)$_4$(aq) and Pu(OH)$_3$C $O_3$$^{[-10]}$ . The calculated solubilities exist between 1.9E-10 and 1.3E-9 mol/L for Am, between 5.6E-6 and 1.2E-4 mol/L for U, between 3.1E-9 and 1.3E-8 mol/L for Np, and between 6.6E-10 and 2.4E-10 mol/L for Pu, depending on groundwater conditions. The present solubilities of each actinide agree well with the results of other studies obtained under similar conditions.s.

Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes (방사분석과 분광학을 이용한 Am(III) 가수분해와 옥살레이트 착물 화학종 연구)

  • Kim, Hee-Kyung;Cho, Hye-Ryun;Jung, Euo Chang;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.397-410
    • /
    • 2018
  • When considering the long-term safety assessment of spent-nuclear fuel management, americium is one of the most radio-toxic actinides. Although spectroscopic methods are widely used for the study of actinide chemistry, application of those methods to americium chemistry has been limited. Herein, we purified $^{241}Am$ to obtain a highly pure stock solution required for spectroscopic studies. Quantitative and qualitative analyses of purified $^{241}Am$ were carried out using liquid scintillation counting, and gamma and alpha radiation spectrometry. Highly sensitive absorption spectrometry coupled with a liquid waveguide capillary cell and time-resolved laser fluorescence spectroscopy were employed for the study of Am(III) hydrolysis and oxalate (Ox) complexation. $Am^{3+}$ ions under acidic conditions exhibit maximum absorbance at 503 nm, with a molar absorption coefficient of $424{\pm}8cm^{-1}{\cdot}M^{-1}$. $Am(OH)_3(s)$ colloidal particles formed under near neutral pH conditions were identified by monitoring the absorbance at around 506-507 nm. The formation of ${Am(Ox)_3}^{3-}$ was detected by red-shifts of the absorption and luminescence spectra of 4 and 5 nm, respectively. In addition, considerable enhancements of the luminescence intensities were observed. The luminescence lifetime of ${Am(Ox)_3}^{3-}$ increased from 23 to 56 ns, which indicates that approximately six water molecules are replaced by carboxylate ligands in the inner-sphere of the Am(III). These results suggest that ${Am(Ox)_3}^{3-}$ is formed through the bidentate coordination of the oxalate ligands.

Evaluation of co- and Mutual Weparation for Actinide(III) and RE by a $(Zr-DEHPA)/n-dodecane-HNO_3$ Extraction System ($(Zr-DEHPA)/n-dodecane-HNO_3$ 금속함유 추출 계에 의한 악티나이드(III)및 RE의 공추출 및 상호 분리)

  • Lee, Eil-Hee;Lim, Jae-Kwan;Chung, Dong-Yong;Yang, Han-Beom;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.123-132
    • /
    • 2007
  • This study was performed to evaluate the co- and mutual separation for Am, Cm and RE elements from the simulated multi-component solution equivalent to real HLW level by a Zr-DEHPA(di-(2-ethylhexyl) phosphoric acid containing Zirconium)/$NDD(n-dodecane)-HNO_3$ extraction system. Zr-DEHPA was self-synthesized and the optimal condition of (15g/L Zr-1M DEHPA)/NDD-1M $HNO_3$ was selected taking into consideration of prevention of the third phase, and effects of concentration of DEHPA, nitric acid and impregnant amount of Zr on the co-extraction of Am, Cm and RE. In that condition, the extraction yields were 81% (Am), 85% (Cm), more than 80% (RE elements), 98% (Mo), 85% (Fe), 98% (U), 73% (Np), and less than 5% (other elements) so that the system developed for the co-extraction of Am-Cm/RE was proved to be available. For that, however, U, Np, Mo and Fe was elucidated to have to be removed in advance, and Zr inducing the third phase formation was found to be practically excluded. The co-extracted Am-Cm/RE were sequentially separated in an order of Am-Cm (stripping agent : 0.05 M DTPA-1M Lactic acid of pH 3.6)${\rightarrow}RE$ (stripping agent : 5M $HNO_3$), and then their separation factors were evaluated. At above conditions, Am of 65.4%, Cm of 63.9%, RE (except for Y) of more than 85% were stripped.

  • PDF

Mutual Separation of Am and Eu by Solvent Extraction with di-(2-ethylhexyl)phosphoric acid Containing Zirconium(III) (Zr을 함유한 di-(2-ethylhexyl)phosphoric acid에 의한 Am과 Eu의 상호분리(III))

  • Yang, Han-Beom;Lee, Eil-Hee;Lim, Jae-Gwan;Kim, Jong-Gu;Kim, Jung-Suk;Yoo, Jae-Hyung
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1006-1013
    • /
    • 1997
  • This study was carried out to elucidate the chemical characteristics of mutual separation for Am and Eu, which were selected as a stand-in from minor actinide and rare earth elements, by solvent extraction with di-(2-ethylhexyl)phosphoric acid containing zirconium at batch system. As results, 92.3% of Am and 99.1% of Eu were coextracted with 1M DEHPA/n-dodecane containing zirconium (Zr $concentration=8.7g/{\ell}$) at 0.5M $HNO_3$ in the extraction step. The extraction yields of Am and Eu were proportionally increased with the concentration of Zr in Zr salt of 1M DEHPA/n-dodecane having the synergistic effect. In the lst stripping step for the selective separation of Am, 38.1% of Am and 3% of Eu were stripped with the mixed solution of 0.05M DTPA and 1M lactic acid adjusted pH of 3.0. At that time, the separation factor calculated from the distribution coefficients of Am and Eu was 14.2. In the 2nd Stipping step to remove the Eu remained the organic phase after the lst stripping step, 94.4% 0f Eu was stripped into aqueous phase with 6M $HNO_3$.

  • PDF

Development of Matrix for the Immobilization of High Level Radioactive Waste : Study on the Synthesis of Ce-pyrochlore (고준위 핵페기물의 고정화를 위한 메트릭스 개발 : Ce파이로클로어 합성 연구)

  • ;;;Yudintsev, S. V²
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • Ce-pyrochlore (CaCe $Ti_2 $O_7)was synthesized to study its properties and phase relations in CaO-Ce $O_2$-Ti $O_2$ system because Ce-pyrochlore was known as a promising material for the immobilization of radioactive actinide. The samples were prepared from the high purity starling materials under the pressure of 200~400 kg/$\textrm{cm}^2$ at room temperature, and annealed at 1000~ 150$0^{\circ}C$. The Synthesized samples were analysed and indentified with XRD and SEM/EDS methods. The optimal formation condition of Ce-pyrochlore was at 130$0^{\circ}C$ under $O_2$ atmosphere and the chemical composition of it wasCa$Ca_{1-x}Ti_{2-y}O_{7-x-2y}$(x=0.03-0.05, y=0.02~0.04) At temperature between 130$0^{\circ}C$ 140$0^{\circ}C$, Ce-pyrochlore underwent rapidly the incongruent decomposition to perovskite. Ce-perovskite, a partial solid solution between perovskite and loparite (C $e_{0.66}$Ti $O_3$), was observed as a major phase above 140$0^{\circ}C$.>.