• Title/Summary/Keyword: Acting System

Search Result 899, Processing Time 0.03 seconds

Modulation of Chemical Carcinogen-Induced Unscheduled DNA Synthesis by Dehydroepiandrosterone (DHEA) in the Primary Rat Hepatocytes

  • Kim, Seung-Hee;Han, Hyung-Mee;Kang, Seog-Youn;Jung, Ki-Kyung;Kim, Tae-Gyun;Oh, Hye-Young;Lee, Young-Kyung;Rheu, Hang-Mook
    • Archives of Pharmacal Research
    • /
    • v.22 no.5
    • /
    • pp.474-478
    • /
    • 1999
  • Modulation of unscheduled DNA synthesis by dehydroepiandrosterone (DHEA) after exposure to various chemical carcinogens was investigated in the primary rat hepatocytes. Unscheduled DNA synthesis was induced by treatment of such direct acting carcinogens as methly methanesulfonate (MMS) and ethyl methanesulfonate (EMS) or procarcinogens including benzo(a)pyrene (BaP) and 7, 12-dimethylbenz(a)anthracene (DMBA). Unscheduled DNA synthesis was determined by measuring [methyl-3H]thymidine radioactivity incorporated into nuclear DNA of hepatocytes treated with carcinogens in the presence or absence of DHEA. Hydroxyurea $(5{\times}10^{-3} M)$was added to growth medium to selectively suppress normal replication. DHEA at concentrations ranging from $(1{\times}10^{-6} M)$ to$(5{\times}10^{-4} M)$ did not significantly inhibit unscheduled DNA synthesis induced by either MMS $(1{\times}10^{-4} M)$ or EMS $(1{\times}10^{-2} M)$. In contrast, DHEA-significantly inhibited unscheduled DNA synthesis induced by BaP $(6.5{\times}10^{-5} M)$ and DMBA.$(2{\times}10^{-5} M)$. DHEA-induced hepatotoxicity in rats was examined using lactate dehydrogenase (LDH) release as an indicator of cytotoxicity. DHEA exhibit no significant increase in LDH release compared with the control at 18 h. These data suggest that nontoxic concentration of DHEA does not affect the DNA excision repair process, but it probably influence the enzymatic system responsible for the metabolic activation of procarcinogens and thereby decreases the amount of the effective DNA adducts formed by the ultimate reactive carcinogenic species.

  • PDF

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.

Preparation and Characterization of Self-assembled Glycol Chitosan Hydrogels Containing Palmityl-acylated Exendin-4 for Extended Hypoglycemic Action

  • Lee, Ju-Ho;Lee, Chang-Kyu;Bae, Sung-Ho;Yoon, Jeong-Hyun;Choi, Eun-Joo;Oh, Kyung-Taek;Lee, Eun-Seong;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Injectable chitosan hydrogels have attracted great potential due to sustained-release property and safety. Here, palmityl-acylated glycol chitosan (Pal-GC) was used to generate physically cross-linked hydrogels by virtue of hydrophobic attraction of linear fatty carbons. Glycol chitosan was chemically modified with N-hydroxysuccinimide-activated palmitic acid in dimethylsulfoxide (DMSO) containing dimethylaminopyridine. Through a series of preparation steps of (i) dialysis with DMSO, (ii) addition of palmityl-acylated exendin-4 (Ex4-C16), and (iii) dialysis with water, Pal-GC was self-assembled to form physically cross-linked hydrogels entrapped with Ex4-C16. The Pal-GC derivative was analyzed by using 1H NMR, and the surface morphology of Pal-GC hydrogels formed was examined by scanning electron microscopy. Also, the hypoglycemic effect induced by Pal-GC hydrogels containing Ex4-C16 (250 nmol/kg) was evaluated in non-fasted type 2 diabetic db/db mice and compared with GC hydrogels containing native Ex4 at the same dose. Results showed that palmityl group was successfully conjugated with the amines of glycol chitosan, and that Pal-GC efficiently generated the hydrogels formation. Moreover, Pal-GC hydrogels containing Ex4-C16 was found to greatly prolong the hypoglycemia duration (~ 4 days). This was due to the dual-functions of the palmityl groups present in both GC and exendin-4 such as hydrophobic attraction and plasma albumin-binding. We consider this new type of self-assembled GC hydrogels loaded with Ex4-C16 would be a promising long-acting sustained-release system with anti-diabetic property.

Antinociceptive Effect of Nicotine in Various Pain Models in the Mouse

  • Han Ki-Jung;Choi Seong-Soo;Lee Jin-Young;Lee Han-Kyu;Shim Eon-Jeong;Kwon Min Soo;Seo Young-Jun;Suh Hong-Won
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.209-215
    • /
    • 2005
  • The antinociceptive effect of nicotine administered intracereboventricularly (i.c.v.) or intrathecally (i.t) in several pain models was examined in the present study. We found that i.t. treatment with nicotine (from 5 to 20 g) dose-dependently blocked pain behavior revealed during the second phase, but not during the first phase in the formalin test. In addition, i.c.v. treatment with nicotine (from 0.1 to $10\;{\mu}g$) dose-dependently attenuated pain behavior revealed during both the first and second phases. In addition to the formalin test, nicotine administered i.c.v. or i.t. attenuated acetic acid-induced writhing response. Furthermore, i.c.v. or i.t. administration of nicotine did not cause licking, scratching and biting responses induced by substance P, glutamate, TNF-${\alpha}$(100 pg), IL-$1{\beta}$(100 pg) and INF-${\gamma}$ (100 pg) injectied i.t. The antinociception induced by supraspinally-administered nicotine appears to be more effective than that resulting from spinally administered nicotine. Our results suggest that nicotine administration induces antinociception by acting on the central nervous system and has differing antinociceptive profiles according to the various pain models.

The Behavior of Corrugated Steel Pipes on Underground Structures According to the Depth of Cover (파형 강관 지중구조물의 토피고에 따른 거동특성)

  • Yook, Jeong-Hoon;Kim, Nag-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • The analysis of corrugated steel pipes is depending on a second dimension frame analysis or compressed ring model. This is the analysis not to consider the behavior of soil-structure interaction. The behavior of load resistance system is varied according to the depth of cover and the spacing of corrugated steel pipes structure. Therefore, the behavior characteristic of corrugated steel pipes was confirmed through finite element analysis to consider the activity of soil-structure interaction. If soil cover is filled up to the more of optimal depth, behavior of corrugated steel pipes are similar to those of ductile steel pipes according to the earth pressure distribution and effects of traffic loads are decreased. But, If soil cover is filled up to the less of optimal depth, corrugated steel pipes can't behave completely as ductile steel pipes because the passive earth pressure acting on side of corrugated steel pipes is decreased according to the decrement of vertical earth pressure, and the traffic loads influence on the section forces is increased, so that the traffic loads dominated the behavior of corrugated steel pipes.

  • PDF

A Study about the interactions of vessels running parallely proximity to one another and safe conducting of them (병항(竝航) 2선박간의 상호작용과 안전항과(安全航過)에 관한 연구)

  • Lee Chun-Ki;Yoon Jeom-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.11-16
    • /
    • 2005
  • When a vessel passes near a channel boundary, the boundary creates forces and moments acting on the vessel. With the same reason passing of two vessels closely gives same effects to each other. The principal. difference between the above two cases is that the channel boundary is long and constant shape compared to those of vessels. The interaction forces and moments between two vessels could be assumed to be functions of the longitudinal distance $x_0$, transverse distance $y_0$ and speeds of the two vessels. Passage of one vessel close to another is important operationally from the viewpoint of replenishment at sea, avoidance of collisions and passage of two vessels in restricted channels. The authors studied the interactions between two vessels running closely and calculated safe conducting distances according to separated distances and speeds of the two vessels.

  • PDF

Hop Extract Produces Antinociception by Acting on Opioid System in Mice

  • Park, Soo-Hyun;Sim, Yun-Beom;Kang, Yu-Jung;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Seo, Jee-Young;Lim, Su-Min;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • In the present study, the antinociceptive profiles of hop extract were characterized in ICR mice. Hop extract administered orally (from 25 to 100 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured in the acetic acid-induced writhing test. Antinociceptive action of hop extract was maintained at least for 60 min. Moreover, cumulative response time of nociceptive behaviors induced with intraplantar formalin injection was reduced by hop extract treatment during the 2nd phases. Furthermore, the cumulative nociceptive response time for intrathecal injection of substance P ($0.7{\mu}g$) or glutamate ($20{\mu}g$) was diminished by hop extract. Intraperitoneal pretreatment with naloxone (an opioid receptor antagonist) attenuated antinociceptive effect induced by hop extract in the writhing test. However, methysergide (a 5-HT serotonergic receptor antagonist) or yohimbine (an ${\alpha}_2$-adrenergic receptor antagonist) did not affect antinociception induced by hop extract in the writhing test. Our results suggest that hop extract shows an antinociceptive property in various pain models. Furthermore, the antinociceptive effect of hop extract may be mediated by opioidergic receptors, but not serotonergic and ${\alpha}_2$-adrenergic receptors.

Effect of PRX-1 Downregulation in the Type 1 Diabetes Microenvironment

  • Yoo, Jong-Sun;Lee, Yun-Jung;Hyung, Kyeong Eun;Yoon, Joo Won;Lee, Ik Hee;Park, So-Young;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.463-468
    • /
    • 2012
  • Type 1 diabetes (T1D) is caused by dysregulation of the immune system in the pancreatic islets, which eventually leads to insulin-producing pancreatic ${\beta}$-cell death and destabilization of glucose homeostasis. One of the major characteristics of T1D pathogenesis is the production of inflammatory mediators by macrophages that result in destruction or damage of pancreatic ${\beta}$-cells. In this study the inflammatory microenvironment of T1D was simulated with RAW264.7 cells and MIN6 cells, acting as macrophages and pancreatic ${\beta}$-cells respectably. In this setting, peroxiredoxin-1, an anti-oxidant enzyme was knocked down to observe its functions in the pathogenesis of T1D. RAW264.7 cells were primed with lipopolysaccharide and co-cultured with MIN6 cells while PRX-1 was knocked down in one or both cell types. Our results suggest that hindrance of PRX-1 activity or the deficiency of this enzyme in inflammatory conditions negatively affects pancreatic ${\beta}$-cell survival. The observed decrease in viability of MIN6 cells seems to be caused by nitric oxide production. Additionally, it seems that PRX-1 affects previously reported protective activity of IL-6 in pancreatic ${\beta}$ cells as well. These results signify new, undiscovered roles for PRX-1 in inflammatory conditions and may contribute toward our understanding of autoimmunity.

Assessing Reliability and Validity of an Instrument for Measuring Resilience Safety Culture in Sociotechnical Systems

  • Shirali, Gholamabbas;Shekari, Mohammad;Angali, Kambiz Ahmadi
    • Safety and Health at Work
    • /
    • v.9 no.3
    • /
    • pp.296-307
    • /
    • 2018
  • Background: Safety culture, acting as the oil necessary in an efficient safety management system, has its own weaknesses in the current conceptualization and utilization in practice. As a new approach, resilience safety culture (RSC) has been proposed to reduce these weaknesses and improve safety culture; however, it requires a valid and reliable instrument to be measured. This study aimed at evaluating the reliability and validity of such an instrument in measuring the RSC in sociotechnical systems. Methods: The researchers designed an instrument based on resilience engineering principles and safety culture as the first instrument to measure the RSC. The RSC instrument was distributed among 354 staff members from 12 units of an anonymous petrochemical plant through hand delivery. Content validity, confirmatory, and exploratory factor analysis were used to examine the construct validity, and Cronbach alpha and test-retest were employed to examine the reliability of the instrument. Results: The results of the content validity index and content validity ratio were calculated as 0.97 and 0.83, respectively. The explanatory factor analysis showed 14 factors with 68.29% total variance and 0.88 Kaiser-Meyer-Olkin index. The results were also confirmed with confirmatory factor analysis (relative Chi-square = 2453.49, Root Mean Square Error of Approximation = 0.04). The reliability of the RSC instrument, as measured by internal consistency, was found to be satisfactory (Cronbach ${\alpha}=0.94$). The results of test-retest reliability was r = 0.85, p < 0.001. Conclusion: The results of the study suggest that the measure shows acceptable validity and reliability.

The Chloroform Fraction of Carpinus tschonoskii Leaves Inhibits the Production of Inflammatory Mediators in HaCaT Keratinocytes and RAW264.7 Macrophages

  • Kang, Gyeoung-Jin;Kang, Na-Jin;Han, Sang-Chul;Koo, Dong-Hwan;Kang, Hee-Kyoung;Yoo, Byoung-Sam;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.255-262
    • /
    • 2012
  • Inflammation is the immune system's response to infection and injury-related disorders, and is related to pro-inflammatory factors (NO, $PGE_2$, cytokines, etc.) produced by inflammatory cells. Atopic dermatitis (AD) is a representative inflammatory skin disease that is characterized by increasing serum levels of inflammatory chemokines, including macrophage-derived chemokine (MDC). Carpinus tschonoskii is a member of the genus Carpinus. We investigated the anti-inflammatory activity of C. tschonoskii by studying the effects of various solvent fractions prepared from its leaves on inflammatory mediators in HaCaT and RAW264.7 cells. We found that the chloroform fraction of C. tschonoskii inhibited MDC at both the protein and mRNA levels in HaCaT cells, acting via the inhibition of STAT1 in the IFN-${\gamma}$ signaling pathway. In addition, the chloroform fraction significantly suppressed the expression of inflammatory factors induced by lipopolysaccharide stimulation, except COX-2 and TNF-${\alpha}$. These results suggest that the chloroform fraction of C. tschonoskii leaves may include a component with potential anti-inflammatory activity.