Browse > Article
http://dx.doi.org/10.5487/TR.2012.28.4.255

The Chloroform Fraction of Carpinus tschonoskii Leaves Inhibits the Production of Inflammatory Mediators in HaCaT Keratinocytes and RAW264.7 Macrophages  

Kang, Gyeoung-Jin (Department of Pharmacology, School of Medicine, Jeju National University)
Kang, Na-Jin (Department of Biomedicine & Drug Development, Jeju National University)
Han, Sang-Chul (Department of Pharmacology, School of Medicine, Jeju National University)
Koo, Dong-Hwan (Department of Biomedicine & Drug Development, Jeju National University)
Kang, Hee-Kyoung (Department of Pharmacology, School of Medicine, Jeju National University)
Yoo, Byoung-Sam (Cosmetic R&D Center, COSMAX Inc.)
Yoo, Eun-Sook (Department of Pharmacology, School of Medicine, Jeju National University)
Publication Information
Toxicological Research / v.28, no.4, 2012 , pp. 255-262 More about this Journal
Abstract
Inflammation is the immune system's response to infection and injury-related disorders, and is related to pro-inflammatory factors (NO, $PGE_2$, cytokines, etc.) produced by inflammatory cells. Atopic dermatitis (AD) is a representative inflammatory skin disease that is characterized by increasing serum levels of inflammatory chemokines, including macrophage-derived chemokine (MDC). Carpinus tschonoskii is a member of the genus Carpinus. We investigated the anti-inflammatory activity of C. tschonoskii by studying the effects of various solvent fractions prepared from its leaves on inflammatory mediators in HaCaT and RAW264.7 cells. We found that the chloroform fraction of C. tschonoskii inhibited MDC at both the protein and mRNA levels in HaCaT cells, acting via the inhibition of STAT1 in the IFN-${\gamma}$ signaling pathway. In addition, the chloroform fraction significantly suppressed the expression of inflammatory factors induced by lipopolysaccharide stimulation, except COX-2 and TNF-${\alpha}$. These results suggest that the chloroform fraction of C. tschonoskii leaves may include a component with potential anti-inflammatory activity.
Keywords
Carpinus tschonoskii; Inflammation mediators; HaCaT keratinocytes; RAW264.7 macrophages;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ulevitch, R.J., Mathison, J.C. and da Silva Correia, J. (2004). Innate immune responses during infection. Vaccine, 22 Suppl 1, S25-S30.   DOI   ScienceOn
2 van Boxel-Dezaire, A.H. and Stark, G.R. (2007). Cell type-specific signaling in response to interferon-gamma. Curr. Top. Microbiol. Immunol., 316, 119-154.   DOI
3 Yamada, P., Ono, T., Shigemori, H., Han, J. and Isoda, H. (2012). Inhibitory effect of tannins from galls of Carpinus tschonoskii on the degranulation of RBL-2H3 Cells. Cytotechnology, 64, 349-356.   DOI   ScienceOn
4 Zhang, R., Kang, K.A., Piao, M.J., Park, J.W., Shin, T., Yoo, B.S., Yang, Y.T. and Hyun, J.W. (2007). Cytoprotective activity of Carpinus tschonoskii against $H_{2}O_{2}$ induced oxidative stress. Nat. Prod. Sci., 13, 118-122.
5 Coleman, J.W. (2001). Nitric oxide in immunity and inflammation. Int. Immunopharmacol., 1, 1397-1406.   DOI   ScienceOn
6 Damte, D., Reza, M.A., Lee, S.J., Jo, W.S. and Park, S.C. (2011). Anti-inflammatory activity of dichloromethane extract of auricularia auricula-judae in RAW264.7 cells. Toxicol. Res., 27, 11-14.   DOI   ScienceOn
7 Duffield, J.S. (2003). The inflammatory macrophage: a story of Jekyll and Hyde. Clin. Sci. (Lond), 104, 27-38.   DOI   ScienceOn
8 Gough, D.J., Levy, D.E., Johnstone, R.W. and Clarke, C.J. (2008). IFNgamma signaling-does it mean JAK-STAT? Cytokine Growth Factor Rev., 19, 383-394.   DOI   ScienceOn
9 Hammer, K.D., Yum, M.Y., Dixon, P.M. and Birt, D.F. (2010). Identification of JAK-STAT pathways as important for the antiinflammatory activity of a Hypericum perforatum fraction and bioactive constituents in RAW 264.7 mouse macrophages. Phytochemistry, 71, 716-725.   DOI   ScienceOn
10 Hongqin, T., Xinyu, L., Heng, G., Lanfang, X., Yongfang, W. and Shasha, S. (2011). Triptolide inhibits IFN-gamma signaling via the Jak/STAT pathway in HaCaT keratinocytes. Phytother. Res., 25, 1678-1685.   DOI   ScienceOn
11 Hu, X., Chen, J., Wang, L. and Ivashkiv, L.B. (2007). Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J. Leukocyte Biol., 82, 237-243.   DOI   ScienceOn
12 Jeon, J.I. and Chang, C.S. (2000). Foliar flavonoids of genus carpinus in eastern Asia. Kor. J. Plant Tax., 30, 139-153.
13 Jeong, S.I., Choi, B.M. and Jang, S.I. (2010). Sulforaphane suppresses TARC/CCL17 and MDC/CCL22 expression through heme oxygenase-1 and NF-kappaB in human keratinocytes. Arch. Pharm. Res., 33, 1867-1876.   DOI   ScienceOn
14 Ju, S.M., Song, H.Y., Lee, S.J., Seo, W.Y., Sin, D.H., Goh, A.R., Kang, Y.H., Kang, I.J., Won, M.H., Yi, J.S., Kwon, D.J., Bae, Y.S., Choi, S.Y. and Park, J. (2009). Suppression of thymusand activation-regulated chemokine (TARC/CCL17) production by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose via blockade of NF-kappaB and STAT1 activation in the HaCaT cells. Biochem. Biophys. Res. Commun., 387, 115-120.   DOI   ScienceOn
15 Kakinuma, T., Nakamura, K., Wakugawa, M., Mitsui, H., Tada, Y., Saeki, H., Torii, H., Komine, M., Asahina, A. and Tamaki, K. (2002). Serum macrophage-derived chemokine (MDC) levels are closely related with the disease activity of atopic dermatitis. Clin. Exp. Immunol., 127, 270-273.   DOI
16 Kang, G.J., Han, S.C., Yi, E.J., Kang, H.K. and Yoo, E.S. (2011). The inhibitory effect of premature Citrus unshiu extract on atopic dermatitis in vitro and in vivo. Toxicol. Res., 27, 173-180.   DOI   ScienceOn
17 Kaplan, A.P. (2001). Chemokines, chemokine receptors and allergy. Int. Arch. Allergy Immunol., 124, 423-431.   DOI   ScienceOn
18 Koo, J.E., Hong, H.J., Mathema, V.B., Kang, H.K., Hyun, J.W., Kim, G.Y., Kim, Y.R., Maeng, Y.H., Hyun, C.L., Chang, W.Y. and Koh, Y.S. (2012). Inhibitory effects of Carpinus tschonoskii leaves extract on CpG-stimulated pro-inflammatory cytokine production in murine bone marrow-derived macrophages and dendritic cells. In Vitro Cell. Dev. Biol. Anim., 48, 197-202.   DOI   ScienceOn
19 Lee, H.J., Dang, H.T., Kang, G.J., Yang, E.J., Park, S.S., Yoon, W.J., Jung, J.H., Kang, H.K. and Yoo, E.S. (2009). Two enone fatty acids isolated from Gracilaria verrucosa suppress the production of inflammatory mediators by down-regulating NFkappaB and STAT1 activity in lipopolysaccharide-stimulated RAW 264.7 cells. Arch. Pharm. Res., 32, 453-462.   DOI   ScienceOn
20 Leung, T.F., Ma, K.C., Hon, K.L., Lam, C.W., Wan, H., Li, C.Y. and Chan, I.H. (2003). Serum concentration of macrophagederived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children. Pediatr. Allergy Immunol., 14, 296-301.   DOI   ScienceOn
21 Li, C.C., Hsiang, C.Y., Lo, H.Y., Pai, F.T., Wu, S.L. and Ho, T.Y. (2012). Genipin inhibits lipopolysaccharide-induced acute systemic inflammation in mice as evidenced by nuclear factor-kappaB bioluminescent imaging-guided transcriptomic analysis. Food Chem. Toxicol., 50, 2978-2986.   DOI   ScienceOn
22 Luster, A.D. (2001). Antichemokine immunotherapy for allergic diseases. Curr. Opin. Allergy Clin. Immunol., 1, 561-567.   DOI
23 MacMicking, J.D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D.S., Trumbauer, M., Stevens, K., Xie, Q.W., Sokol, K. and Hutchinson, N. (1995). Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell., 81, 641-650.   DOI   ScienceOn
24 Mantovani, A., Gray, P.A., Van Damme, J. and Sozzani, S. (2000). Macrophage-derived chemokine (MDC). J. Leukocyte Biol., 68, 400-404.
25 Marcuzzi, A., Secchiero, P., Crovella, S. and Zauli, G. (2012). TRAIL administration down-modulated the acute systemic inflammatory response induced in a mouse model by muramyldipeptide or lipopolysaccharide. Cytokine, 60, 43-46.   DOI   ScienceOn
26 Maruotti, N., Cantatore, F.P., Crivellato, E., Vacca, A. and Ribatti, D. (2007). Macrophages in rheumatoid arthritis. Histol. Histopathol., 22, 581-586.
27 Michelsen, K.S., Doherty, T.M., Shah, P.K. and Arditi, M. (2004). TLR signaling: an emerging bridge from innate immunity to atherogenesis. J. Immunol., 173, 5901-5907.   DOI
28 Palsson-McDermott, E.M. and O'Neill, L.A. (2004). Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunol., 113, 153-162.   DOI   ScienceOn
29 Pease, J.E. and Williams, T.J. (2006). Chemokines and their receptors in allergic disease. J. Allergy Clin. Immunol., 118, 305-318.   DOI   ScienceOn
30 Ricciotti, E. and FitzGerald, G.A. (2011). Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 31, 986-1000.   DOI   ScienceOn
31 Stempelj, M., Kedinger, M., Augenlicht, L. and Klampfer, L. (2007). Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J. Biol. Chem., 282, 9797-9804.   DOI   ScienceOn
32 Takeshita, F., Gursel, I., Ishii, K.J., Suzuki, K., Gursel, M. and Klinman, D.M. (2004). Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin. Immunol., 16, 17-22.   DOI   ScienceOn