• Title/Summary/Keyword: Acting System

Search Result 902, Processing Time 0.028 seconds

Usefulness of Meyerhold's 'Biomechanics' as an Alternative for a Method of Actor Training I - focused on the background and theoretical principles of 'Biomechanics' (배우 훈련 방법의 대안으로서 메이어홀드 '인체역학'의 효용성 I -'인체역학'의 형성 배경과 이론적 원리를 중심으로)

  • Cho, Han-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.5
    • /
    • pp.95-106
    • /
    • 2014
  • Meyerhold's 'Biomechanics', which germinated from a critical point of view towards naturalism theatre, is a primary acting method that attempted to approach to acting in a material way, along with Stanislavski's 'System'. However, not only for a reason of the political background that all study on Meyerhold were forbidden in Russia but also for a reason of universalization of Stanislavski's 'System' through the world mutated into American acting method, it is a fact that Meyerhold's 'Biomechanics' is not actively utilized in a field of actor training at the present day. Especially, in case of actor training in Korea, 'Biomechanics' is also misunderstood as a method only focused on an actor's physical approach. Therefore, a purpose of this study is to explore usefulness of 'Biomechanics' in order to practically apply it to the actor training through correct understanding.

Analysis of the Uncertainty of Compressive Forces Acting on the Patella by Using Multi-Body Modeling and Muscle Mechanics (다물체 모델링과 근의 특성을 이용한 무릎뼈에 가해지는 압력의 불확실성 추정 연구)

  • NamGoong, Hong;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.785-790
    • /
    • 2011
  • The goal of this study is to estimate the force acting on the knee joint in the human body by using the Hilltype muscle model based on a musculoskeletal model of the human lower extremity in the sagittal plane. For estimating the force applied, the human leg is modeled using multi-body modeling. This leg model comprises biarticular muscles acting on two joints of the upper and lower limbs, and the muscles include some of the major muscles such as the hamstring. In order to analyze the uncertainty of the applied forces acting on the knee joint, statistical distributions of human body, leg part, parameters are required and to obtain the parameter's statistical characteristic of the part sample survey method is employed. Finally, by using the sensitivity information of the parameters, the force acting on the knee joint can be estimated.

Hydrodynamic Forces Acting on Porpoising Craft at High-Speed

  • Katayama, Toru;Ikeda, Yoshiho
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.2
    • /
    • pp.17-26
    • /
    • 1999
  • An experimental investigation on hydrodynamic forces acting on a porpoising craft at high advanced speeds up to Froude numbers Fn=6.0(Fn=U\ulcorner:Lo\ulcorner denote overall length of ship) in calm water is performed. Captive model tests and forced motion tests are carried out to measure the hydrodynamic forces. The results show that significant nonlinear effects for motion amplitudes appear in the restoring, the added mass and the damping coefficients. The experimental results are compared with the results of a prediction method of the hydrodynamic forces include the nonlinear effects, and show a good agreement with them. A simulation using the predicted hydrodynamic forces in a nonlinear motion equation is carried out to obtain the porpoising motion of a craft in calm water. The calculated results are in fairly good agreement with experimental ones.

  • PDF

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF

An Analytical Study on Camshaft Locus at Camshaft Bearing in a Direct Acting OHC Valve Train System (직접 구동 OHC 밸브 트레인 캠 축의 운동 궤적 해석)

  • 지유철;조명래;정진영;최상현;한동철;최재권
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.53-59
    • /
    • 1997
  • The camshaft locus at camshaft beating in a direct acting OHC valve train system has been investigated using the transient method. Forces applied to the camsfiaft are composed of two components, one is the transfer force between the cam and the tappet, the other is the frictional force. These forces have been calculated using the lumped mass model and the elastohydrodynamic lubrication theory. The alternating direction implicit method has been used for the numerical analysis of Reynolds equation, and 4th order Runge-Kutta method has been used for the transient journal locus analysis. The effects of various load conditions are presented in the form of journal locus. As a result of the analysis, it has been found that camshaft bearings were mainly in the hydrodynamic lubrication condition.

Study on Development of Hospital Service Robot SmartHelper (병원용 서비스 로봇 SmartHelper 개발에 관한 연구)

  • Choi, Kyung-Hyun;Lee, Seok-Hee;Park, Tae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.325-329
    • /
    • 2001
  • This paper addresses a control architecture for the hospital service robot, SmartHelper. With a sensing-reasoning-acting paradigm, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the control architecture is verified.

  • PDF

Integrated dynamics modeling for supercavitating vehicle systems

  • Kim, Seonhong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.346-363
    • /
    • 2015
  • We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.

A Study on the Model Test Scheme for Establishing the Mathematical Model of Hydrodynamic Force and Moment Acting on a Slowly Moving Ship (저속시 선체에 작용하는 유체력 수학모형 정립을 위한 모형시험 방안 연구)

  • Yoon, Hyeon-Kyu;Kim, Sun-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.98-104
    • /
    • 2005
  • The mathematical models of hydrodynamic force and moment acting on a ship at low speed range should be established differently from the ones at nominal cruising speed range since a ship moves with large drift angle or rotates in a stationary position. We modified widely used Yoshimura's cross flow model in order to apply the system identification method to estimate parameters in the model. The apparatus and the procedure of free running model test were suggested so that the parameters in the model be estimated. The validity of our proposing modified model and test procedure was confirmed by comparison with the results of simulated model test.

A Study on Simplified Sloshing Impact Response Analysis for Membrane-Type LNG Cargo Containment System (LNG 화물창 단열구조의 슬로싱 충격응답 간이해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.451-456
    • /
    • 2011
  • To ensure structural integrity of membrane type LNG tank, the rational assessment of the sloshing impact responses of tank structures should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the resulting structural responses show very complex behaviors accompanied with fluid structure interaction. So it is not easy to estimate them accurately and immense time consuming calculation process would be necessary. In this research, a simplified method to analyse the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was studied. The proposed technique based on the concept of linear combination of the triangular response functions which are the transient responses of structures under the unit triangular impact pressure acting on structures. The validity of suggested method was verified through the example calculations and applied to the dynamic structural response analysis of a real Mark III membrane type insulation system using the sloshing impact pressure time histories obtained by model test.

An Algorithm of Predicting the Zone 3 Trip Time of Distance Relay by using PMU Data when Power Systems Face Cascaded Event on Transmission System (송전 계통의 광역정전 징후 시 PMU 취득 데이터를 이용한 거리계전기 Zone3 동작시간 예측 알고리증)

  • Kim, Jin-Hwan;Lim, Il-Hyung;Lee, Seung-Jae;Choi, Myeon-Song;Kim, Tae-Wan;Lim, Seong-Il;Kim, Sang-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2303-2310
    • /
    • 2009
  • Defense systems are needed to prevent catastrophic failures of a power grid due to cascaded events. Cascaded events can be attributed to improper operations of protective relays. Especially, it is the most dangerous problem that trips of backup relays by overload. In this paper, a new algorithm of predicting Zone 3 acting time of distance relay is proposed using the real time synchronized data from PMUs on the transmission system when the power system is danger. In the proposed, some part of the power system are outage when some unexpected fault in the power system, the algorithm will monitor the impedance locus of distance relay. At this time, if there is a big change of Impedance locus, the algorithm will calculate the Zone 3 acting time of the distance relay by the over load. In the case studies, the estimation and simulation network have been testified and analysed in Matlab Simulink.