• Title/Summary/Keyword: Acrylic fabric

Search Result 61, Processing Time 0.024 seconds

Removal of Hemoglobin from Acrylic Acid Grafted Nylon Fabric The Removal and the State of Adhesion of Hemoglobin on Grafted Nylon Fabric- (아크릴산 그라프트 중합한 나일론 직물의 헤모글로빈 오구 세척성 -그라프트 나일론 직물에 대한 헤모글로빈 부착상태와 세척성-)

  • 오수민;김인영;송화순
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.41-48
    • /
    • 1999
  • The removal of hemoglobin from acrylic acid grafted Nylon fabrics has been investigated. In order to change detergency of Nylon 6 fabric, acrylic acid(AA) were graft copolymerized on Nylon fabric using ammonium persulfate(APS) as a initiator, and then acrylic acid grafted Nylon was treated with NaOH solution. The graft ratio increased linearly with increasing acrylic acid concentration. The graft ratio was the highest when the concentration of APS was 0.05%, and it decreased as the concentration of APS increased. The surface of Nylon fabric became rough due to graft. Moisture regain was increased by graft and alkaline treatment, contact angle was also improved compared with the ungrafted. The hemoglobin was easily solubilized and removed from grafted Nylon fabric, while it was difficult to remove hemoglobin from ungrafted Nylon fabric. The effects of graft on removal of hemoglobin was related with increase of moisture regain and transformation of COOH to COONa by alkaline treatment.

  • PDF

Effects of Commercial Nitrilase Hydrolysis on Acrylic Fabrics

  • Kim, Hye Rim;Seo, Hye Young
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.889-896
    • /
    • 2016
  • This study aims to evaluate the hydrolytic activity of a commercial nitrilase and optimize nitrilase treatment conditions to apply eco-friendly finishing on acrylic fabrics. To assess the possibility of hydrolyzing nitrile bonds in acrylic fabric using a commercial nitrilase, the amounts of hydrolysis products, ammonia and carboxylate ions, were measured. The treatment conditions were optimized via the amount of ammonia. The formation of carboxylate ions on the fabric surface was detected by X-ray photoelectron spectroscopy and wettability measurements. After nitrilase treatment, ammonia was detected in the treatment liquid; thus, nitrilase hydrolyzed the nitrile bonds in acrylic woven fabric. The largest amount of ammonia was released into the treatment liquid under the following conditions: pH 8.0, $40^{\circ}C$, and a treatment time of 5 h. The formation of carboxylate ions on the acrylic woven fabric surface by nitrilase hydrolysis was proven by the increased O1s content measuring of XPS analysis. From comparison of the results of nitrilase and alkaline hydrolysis, the white index and strength of the alkali-hydrolyzed acrylic fabric decreased, whereas those of the nitrilase-hydrolyzed samples were maintained. The nitrilase hydrolysis improved the sensitivity of acrylic fabrics to basic dye similarly to alkaline hydrolysis without the drawbacks of yellowing and decreased strength caused by alkaline hydrolysis.

Radiation Grafting of Hydrophilic Monomers onto Polyester

  • Park, Jae-Ho;Lee, Chong-Kwang;Lee, Kwang-Jin
    • Nuclear Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.103-114
    • /
    • 1973
  • Radiation grafting of acrylic acid and 4-vinylpyridine at room temperature has been studied by an impregnation method to improve the hygroscopic properties, the antistatic behavior and the dyeability of polyester fabric. Polyester fabric was impregnated with acrylic acid or aqueous emulsion of acrylic acid-4-vinylpyridine by immersion at 25$^{\circ}$or 7$0^{\circ}C$. The impregnated fabric was irradiated under nitrogen gas with ${\gamma}$-rays from Co-60. When acrylic acid grafted polyester fabric was treated with sodium carbonate, calcium acetate and potassium persulfate, tne rate of water absorption was increased and most parts of polyacrylic acid formed were extracted off from the fabric with 0.1% solution of sodium hydroxide at 10$0^{\circ}C$. In the case of the impregnation of a mixture of acrylic acid and 4-vinylpyridine the petcent of grafting has been shown to be proportional to the ratio of 4-VP/AA and radiation dost. Estimating by contact angle measurements of water on the various polymer surfaces, the antistatic behavior was decreased with the increase of grafting percent. The investigation of electron micrograph disclosed the existence of certain type of discontinuities in the acrylic acid grafted polyester fiber which was treated with various salts.

  • PDF

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

Physical properties of chitosan added on acrylic acid grafted cotton fabrics (아크릴산 그라프트 중합시 첨가된 Chitosan이 면직물에 미치는 물성)

  • 김수미;송화순
    • Textile Coloration and Finishing
    • /
    • v.14 no.6
    • /
    • pp.313-318
    • /
    • 2002
  • Chitosan is known to be an excellent biocompatible natural polymer. Recently, with a growing interest of health and environment, chitosan which is good in no harmful effect on human body and environment, has been watched as the finish treatment of hygiene and pleasantness. The purpose of this study is to develop multi functional fabrics by chitosan added on acrylic acid grafted cotton fabrics. Therefore physical properties such as moisture regain, air permeability, whiteness, static voltage and tensile strength of chitosan added on acrylic acid grafted cotton fabrics were investigated. The results are as follows ; According to increased chitosan's concentration, grafting yield was decreased. Therefore thickness of film by treated chitosan added on acrylic acid grafted cotton fabric became thin. FT R spectra of chitosan add on acrylic acid grafted cotton fabric clearly showed peaks of COOH and $NH_2$, Moisture regain, static voltage of chitosan add on acrylic acid grafted cotton fabrics were increased than control. Air permeability, whiteness and tensile strength were decreased than control.

Antimicrobial Activity and Physical Properties of Acrylic Acid Grafted Cotton Kintted Fabrics added with Chitosan (면편성물의 아크릴산 그라프트 중합시 키토산 첨가에 따른 항균성 및 물성)

  • 김수미;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.11
    • /
    • pp.1252-1259
    • /
    • 2003
  • The purpose of this study is to develop multi-functional fabrics by chitosan added on acrylic acid grafted cotton kintted fabrics. Therefore physical properties such as antimicrobial activity, deodorization rate, moisture regain, whiteness, and tensile strength of chitosan added on acrylic acid grafted cotton kintted fabrics were investigated. The results are as follows; According to increased chitosan's concentration, grafting yield was decreased. Therefore thickness of film by treated chitosan added on acrylic acid grafted cotton kintted fabric became thin. FT-IR spectra of chitosan add on acrylic acid grafted cotton kintted fabric clearly showed peaks of COOH and NH$_2$. Antimicrobial activity and deodorization rate of chitosan add on acrylic acid grafted cotton kintted fabrics were increased greatly than untreated. And their durability of laundry were good, Moisture regain of treated fabrics was higher than untreated. Whiteness and tensile strength of treated fabrics were lower than untreated.

Effects of Mordanting, Dyeing, Rinsing, and Fiber Characteristics on the Air-permeability and Color of Fabrics Dyed using Cochineal Dyestuff

  • Na, Ho-Jin;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.9 no.3
    • /
    • pp.114-124
    • /
    • 2005
  • Based on the previous study, three types at synthetic fibers comprising nylon, PET, and acrylic fibers were investigated in this study. The effect at mordanting on the air-permeability and dyeing properties at fabrics was investigated. The effect at rinsing process on the air-permeability and color was quantitatively investigated by rinsing the mordanted fabric specimens 1$\sim$3 times after mordanting. The air-permeability changed peculiarly according to the characteristics of the tiber materials after mordanting. The air-permeability values of nylon and acrylic fabric specimens dropped significantly after mordanting. On the other hand, those of PET fabric specimens hardly changed after mordanting. The metal ions absorbed on the fibers of nylon and acrylic fabrics did not show the mordanting effect. Regardless of mordanting, cochineal dyestuff made direct links with the molecular chains in nylon fabrics exhibiting dark colors. After dyeing acrylic fabrics, the color did not develop at all, even though partial components of the cochineal dyestuff were absorbed apparently.

A Study on Dyeing Properties and Color Research of Knitted Fabric and by Scoria

  • Chung, In-Hee
    • Journal of Fashion Business
    • /
    • v.11 no.3
    • /
    • pp.79-86
    • /
    • 2007
  • The purpose of this study is to understand the dyeing properties and color analysis of fabrics knitted with ramie, cotton, wool and acrylic by using scoria and to analyze whether the knitted fabrics can be used for industrialization by measuring color fastness after and before sliver-nano process. The following is the conclusions. Firstly, when ramie fabric regarding cotton, wool and acrylic was dyed at the temperature of $50^{\circ}C$ for fifteen minutes by using 10, 25, 50, 100g/ $\ell$ of scoria, dyeing absorption gradually increased up to 50g/ $\ell$, and over the point of 50g/ $\ell$ it showed slow increase. Secondly, regarding saturation, among ramie fabric, wool, cotton and acrylic, wool appears as the lowest brightness. Therefore, it can be dyed with bright color and the highest value. In terms of the value of chromaticity, wool also emerges as the lowest brightness. On the contrary, acrylic showed the lightest red as it had the value of the smallest b. Cotton takes the lightest yellow as the b value of the cotton showed the smallest. Thus, scoria dyestuff is a material that showed strong red and yellow on knitted fabric mixed with wool that is the biggest a. b value. Thirdly, in terms of dyeing fastness, sunlight fastness did not show noticeable differences before and after silver-nano processes, but in terms of washing and friction fastness, the material processed by silver-nano indicated that all knitted fabrics are over 4-5 point. which means silver-nano process can be effective for the industrial applications. As mentioned above, as a result of dyeing knitted fabrics with scoria, this study found a possibility of dyeing in the fabric materials, and if there is deeper dyeing experiments, fastness experiments and speculations, it might be possible to be a big issue just like loess and charcoal.

Blending Effect on the Mechanical and Hand Properties of Wool/Acrylic Blend Knits

  • Park Myung-Ja
    • The International Journal of Costume Culture
    • /
    • v.8 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • Mechanical properties and hand evaluation of wool/acrylic(W/A) blend knits were conducted before and after repeated washing to get the optimum W/A blending ratio, which could help achieve the optimum mechanical and hand properties of the knits. The five test fabrics using the yarns with different W/A blending ratios($\%$), 100/0, 70/30, 50/50, 30/70, 0/100, were knitted. The fabrics were washed by a rotating drum type washing machine. Then, objective mechanical and hand properties were evaluated by KES-FB, Kawabata evalution system for fabric. The results are as follows: there was no change in the hand value of the knitted fabric with the W/A-blended yarn caused by the change in the blending ratio before washing. After washing, however, the increase of acrylic's blending rate caused the bending property to decrease proportionally, while the friction coefficient of the surface property increased. Furthermore, the study showed that W/A 50/50 possesses the most superior tensile property and shearing property, which could attain the optimum blending ratio. Similar results in hand value were derived in all the samples. After washing, however, the increase in acrylic's blending rate caused a proportional decrease in KOSHI and an increase in FUKURAMI. In addition, W/A 50/50 gained the biggest NUMERI value, again corresponding to the optimum blending ratio. Similar results in total hand value were derived in all the samples before washing. After washing, though, all the total hand values decreased, and, as the wool fabric's blending rate increased, the total hand values proportionally decreased further.

  • PDF

Radiation-Induced Graft Copolymerization of Acrylic Acid onto Polyester

  • Chang, Hoon-Sean;Kong, Young-Kun;Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.65-74
    • /
    • 1977
  • The radiation-induced graft polymerization of acrylic acid onto polyester fabric was investigated with accelerated electron beams as ratiation source at high dose rates. Homopolymerization was suppressed by addition of cations which is known as homopolymerization inhibitor, but this practical advantage was obtained at the expense of grafting efficiency. The rate of grafting (%/sec) was proportional to the 0.82th power of dose rates over the range from 1.6$\times$10$^{6}$ to 10$\times$10$^{6}$ rad/sec. The grafted polyester fabric showed considerable improvement in moisture regain and antistatic properties.

  • PDF