• Title/Summary/Keyword: Acrylic denture base resin

Search Result 69, Processing Time 0.027 seconds

Nonthermal plasma on the shear bond strength of relining resin to thermoplastic denture base resin (열가소성 의치상 레진과 첨상용 레진의 접착 강도에 저온플라즈마가 미치는 효과)

  • Manaloto-Ceballos, Liezl;Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.199-205
    • /
    • 2018
  • Purpose: This study evaluated the effect of nonthermal plasma treatment on the bond strength of autopolymerizing relining resin to the injection molded thermoplastic denture base resins (TDBRs) with different surface treatments. Materials and methods: Acrylic Resin (Acrytone), Polyester (Estheshot-Bright), Polyamide (Valplast) and Polypropylene (Weldenz) were subjected to various surface treatments: No treatment, Nonthermal plasma, Sandblasting, Sandblasting and nonthermal plasma. Specimens were bonded using an autopolymerizing relining resin. Shear bond strength was tested using universal testing machine with crosshead speed of 1 mm/min. Statistical analysis by two-way analysis of variance with Tukey's test post hoc was used. Results: Acrytone showed significantly higher shear bond strength value among other TDBR group while Weldenz had the lowest. The sandblasting and nonthermal plasma condition had significantly higher shear bond strength value in all of the resin groups (P < .05). Conclusion: The use of nonthermal plasma treatment showed limited effect on the shear bond strength between TDBRs and relining resin, and combination of nonthermal plasma and sandblasting improved the shear bond strength between TDBR and reline material.

In vitro comparison of two different materials for the repair of urethan dimethacrylate denture bases

  • Cilingir, Altug;Bilhan, Hakan;Geckili, Onur;Sulun, Tonguc;Bozdag, Ergun;Sunbuloglu, Emin
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.396-401
    • /
    • 2013
  • PURPOSE. The purpose of this in vitro study was to investigate the flexural properties of a recently introduced urethane dimethacrylate denture base material (Eclipse) after being repaired with two different materials. MATERIALS AND METHODS. Two repair groups and a control group consisting of 10 specimens each were generated. The ES group was repaired with auto-polymerizing polymer. The EE group was repaired with the Eclipse. The E group was left intact as a control group. A 3-point bending test device which was set to travel at a crosshead speed of 5 mm/min was used. Specimens were loaded until fracture occurred and the mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations were calculated for each group and the data were statistically analyzed. The results were assessed at a significance level of P<.05. RESULTS. The mean "displacement", "maximum load before fracture", flexural strength" and "flexural modulus" rates of Group E were statistically significant higher than those of Groups ES and EE, but no significant difference (P>.05) was found between the mean values of Group ES and EE. There was a statistically significant positive relation (P<.01) between the displacement and maximum load of Group ES (99.5%), Group EE (94.3%) and Group E (84.4%). CONCLUSION. The more economic and commonly used self-curing acrylic resin can be recommended as an alternative repair material for Eclipse denture bases.

THE EFFECT OF DENTURE CLEANSERS ON SOFT LINING MATERIALS (의치 세정제가 탄성 의치상 이장재에 미치는 효과에 관한 연구)

  • Jang, Bok-Sook;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.219-235
    • /
    • 1993
  • To determine the compatibilities of soft liming materials with denture cleansers by measuring the flexibility and elasticity and investigating the surface changes, 4 self-curing acrylic resin soft lining materials and 1 heat-curing silicone soft lining material were evaluated. 3mm thick x 20mm diameter discs of soft lining materials were individually bonded to a hard acrylic resin base as per manufacturers’instructions. Using an Instron universal testing machine, a static stress of $2kg/cm^2$ was applied for 30secs., the strain in compression was measured, giving an indication of the material’s flexibility. Elastic recovery was measured at 10secs. After removal of stress. Surface changes were investigated with Stereomicroscope. Then the specimens were immersed in 4alkaline peroxide denture cleansers and water as control group, tests were carried out at 1 day, 2 days, 7 days, 14 days and 30 days. The results were as follows : 1. Alkaline peroxide denture cleansers caused considerable porosity on the surface of selfcuring acrylic resin soft lining materials, and the most affected by the cleansers were Viscogel, Coe-Soft, Coe-Comfort, Lynal, in that order. 2. There was significant difference in flexibility between each soft lining material except for Coe-Comfort and Visco-gel, and every soft lining material was significant difference in elasticity. Especially Molloplast-B and Lynal were less flexible and more elastic than other soft lining materials(p<0.05). 3. The denture cleansers increased the flexibility and elasticity of the soft lining materials compared with control group(p<0.05), and Denalan, Polident, Kleenite, Efferdent affected the soft lining materials in that order. 4. There was significant difference in flexibility between each denture cleanser except for Denalan and Polident(p<0.05). Though Denalan and Polident, Denalan and Kleenite did not show significant difference in elasticity, other denture cleansers showed significant difference among each other(p<0.05). 5. Clinically Coe-Comfort, Coe-Soft and Visco-gel were incompatible with alkaline peroxide denture cleansers, and Lynal would be used within only 2 weeks. But Molloplast-B was compatible with alkaline peroxide denture cleansers.

  • PDF

The effect of acrylamide incorporation on the thermal and physical properties of denture resins

  • Ayaz, Elif Aydogan;Durkan, Rukiye;Bagis, Bora
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.110-117
    • /
    • 2013
  • PURPOSE. Polymethyl methacrylate (PMMA) is the most commonly used denture base material despite typically low in strength. The purpose of this study was to improve the physical properties of the PMMA based denture base resins (QC-20, Dentsply Ltd., Addlestone, UK; Stellon, AD International Ltd, Dentsply, Switzerland; Acron MC; GC Lab Technologies Inc., Alsip, Japan) by copolymerization mechanism. MATERIALS AND METHODS. Control group specimens were prepared according to the manufacturer recommendations. In the copolymer groups; resins were prepared with 5%, 10%, 15% and 20% acrylamide (AAm) (Merck, Hohenbrunn, Germany) content according to the moleculer weight ratio, respectively. Chemical structure was characterized by a Bruker Vertex-70 Fourier transform infrared spectroscopy (FTIR) (Bruker Optics Inc., Ettlingen, Germany). Hardness was determined using an universal hardness tester (Struers Duramin, Struers A/S, Ballerup, Denmark) equipped with a Vickers diamond penetrator. The glass transition temperature ($T_g$) of control and copolymers were evaluated by Perkin Elmer Diamond DSC (Perkin Elmer, Massachusetts,USA). Statistical analyses were carried out using the statistical package SPSS for Windows, version 15.0 (SPSS, Chicago, IL, USA). The results were tested regarding the normality of distribution with the Shapiro Wilk test. Data were analyzed using ANOVA with post-hoc Tukey test (P<.01). RESULTS. The copolymer synthesis was confirmed by FTIR spectroscopy. Glass transition temperature of the copolymer groups were higher than the control groups of the resins. The 10%, 15% and 20% copolymer groups of Stellon presented significantly higher than the control group in terms of hardness. 15% and 20% copolymer groups of Acron MC showed significantly higher hardness values when compared to the control group of the resin. Acrylamide addition did not affect the hardness of the QC-20 resin significantly. CONCLUSION. Within the limitation of this study, it can be concluded that copolymerization of PMMA with AAm increased the hardness value and glass transition temperature of PMMA denture base resins.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

A COMPARATIVE EXPERIMENTAL STUDY ON THE SURFACE CHARACTERISTICS AND THE FITTNESS OF THE RESILIENT DENTURE LINES (탄성 의치상 이장재의 표면 특성 및 적합도에 관한 비교 실험 연구)

  • Lee, Soo-Back;Yoon, Chang-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.137-154
    • /
    • 1987
  • The purpose of this investigation was to determine the surface characteristics and the fittness of the resilienct denture lines. Firstly, 50 samples ($2.0{\times}4.0{\times}0.3cm$) of 4 resilient lining materials (Molloplast B, Coe Super Soft, Mollosil, Coe Soft) and one conventional acrylic resin (K-33) were processed according to manufacture's direction and examined the surface characteristics by use of surface profilometer and scanning electron microscopy. Secondly, 50 identical maxillary casts were made and 50 denture bases were pro cessed of 4 resilient liners and one conventional acrylic resin and they were stored in the room temperature water bath of 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks and 6 weeks after processing. The original casts were cut away 1 cm from the posterior border, the dentures were seated, and the existing space was measured at seven regions according to the storage time by use of the modified thickness guage. The results were as follows. 1. Surface roughness (Rz) were $4.00{\pm}1.60{\mu}m$ in Mollosil, $4.47{\pm}2.21{\mu}m$ in Molloplast B, $7.46{\pm}1.70{\mu}m$ in Coe Super Soft, $12.70{\pm}2.39{\mu}m$ in Coe Soft and $13.03{\pm}2.74{\mu}m$ in K-33. 2. The generation of porosity was far more active in cold-cured resilient liners (Coe Soft and Mollosil) than in heat cured resilient liners (Molloplast B, and Coe Super Soft) and conventional heat cured resin (K-33). 3. Denture bases showed the greatest discrepancy at the central portion of the posterior palatal border and the intimate contact in the buccal flange regardless of denture base materials. 4. When the denture bases were stored in the water for 1 day and 6 weeks after processing, the sum of average discrepancies in the seven regions of the denture base was the greatest in K-33 followed by Molloplast B, Mollosil, Coe Soft and Coe Super Soft but followed by Coe Soft, Molloplast B, Mollosil, Coe Super Soft in that order respectively. 5. There was not a significant difference (p>0.05) in Coe Super Soft, K-33 but there was a significant difference (P<0.01) in Molloplast B, Mollosil, Coe Soft at the amount of dimensional changes according to the storage time.

  • PDF

Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins

  • Asar, Neset Volkan;Albayrak, Hamdi;Korkmaz, Turan;Turkyilmaz, Ilser
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.241-247
    • /
    • 2013
  • PURPOSE. To evaluate the effect of various metal oxides on impact strength (IS), fracture toughness (FT), water sorption (WSP) and solubility (WSL) of heat-cured acrylic resin. MATERIALS AND METHODS. Fifty acrylic resin specimens were fabricated for each test and divided into five groups. Group 1 was the control group and Group 2, 3, 4 and 5 (test groups) included a mixture of 1% $TiO_2$ and 1% $ZrO_2$, 2% $Al_2O_3$, 2% $TiO_2$, and 2% $ZrO_2$ by volume, respectively. Rectangular unnotched specimens ($50mm{\times}6.0mm{\times}4.0mm$) were fabricated and drop-tower impact testing machine was used to determine IS. For FT, compact test specimens were fabricated and tests were done with a universal testing machine with a cross-head speed of 5 mm/min. For WSP and WSL, disc-shaped specimens were fabricated and tests were performed in accordance to ISO 1567. ANOVA and Kruskal-Wallis tests were used for statistical analyses. RESULTS. IS and FT values were significantly higher and WSP and WSL values were significantly lower in test groups than in control group (P<.05). Group 5 had significantly higher IS and FT values and significantly lower WSP values than other groups (P<.05) and provided 40% and 30% increase in IS and FT, respectively, compared to control group. Significantly lower WSL values were detected for Group 2 and 5 (P<.05). CONCLUSION. Modification of heat-cured acrylic resin with metal oxides, especially with $ZrO_2$, may be useful in preventing denture fractures and undesirable physical changes resulting from oral fluids clinically.

A Study for Bond Strengths of Acrylic and Silicone Based Soft Lining Materials (애크릴릭 및 실리콘 계열 연성 의치상 이장재의 결합력에 관한 연구)

  • Nam, Eun-Joo;Lim, Ju-Hwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • One of the methods to improve the softness and comfortness of denture base is the use of soft denture liners. In this study, specimens were made by 2 kinds of acrylic based soft lining materials and 2 kinds of silicone based soft lining materials, and bonded to acrylic resin(Lucitone $199^{(R)}$). Then they were tested the differences of tensile bond strengths according to the materials, thickness, surface treatment and failure mode. 1. Tensile bond strength according to soft lining materials was increased in order of Coe-$soft^{(R)}$, $Mollosil^{(R)}$, $Trusoft^{(R)}$, Ufi-Gel $C^{(R)}$. The differences between groups were statistically significant at level of 0.05. 2. Tensile bond strength according to thickness of soft lining materials was increased in order of 3mm, 2mm, 1mm. The differences between groups were not statistically significant. 3. Tensile bond strength of treated surface showed higher bond strength than nontreated surface. The difference between groups was not statistically significant. 4. The failure mode of Coe-$soft^{(R)}$, $Trusoft^{(R)}$, $Mollosil^{(R)}$ were mainly cohesive failure, and that of Ufi-Gel $C^{(R)}$ were mainly adhesive failure.

  • PDF

A comparative study on the relationship of investing medium to vertical occusal change and surface smoothing during denture processing (Resin processing시(時) 매몰재(埋沒材)에 따른 교합고경(咬合高涇) 및 의치표면(義齒表面) 활택도(滑澤度)의 변화(變化)에 관(關)한 연구(硏究))

  • Kim, Uoong-Chul;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 1981
  • A comparative study was conducted to evaluate the relationship of investing medium to the amount of vertical occlusal changes and to the differences of surface smoothness during denture construction. Three groups of 20 dentures, 30 sets of upper and lower were fabricated of conventional heatcuring acrylic denture base resin, using silicone-gypsum molding techniques, with or without covering the occlusal surfaces of the teeth by artificial stone and all-gypsum molding techniques. The distance between the two reference points indented by 1/2 round bur on the upper and lower frontal surfaces of each articulator were measured and recorded before processing and again after processing and remounting of each denture on the articulator. The differences between the two recordings indicated the amount of vertical opening during denture processing. The difference of surface smoothness were investigated and determined by 3 observers continual comparing of the two randomly selected dentures with each other, which were seperately selected as pairs from the different two groups of 20. The results obtained were as follows: 1. During resin processing no statistically significant differences of the amount of vertical occlusal changes were detected between any of the two groups of two silicone-gypsum and one allgypsum molding techniques, although the amount of vertical opening was somewhat increased when silicone-gypsum molding technique was used. 2. Surface smoothness of the processed denture was makedly by increased when silicone-gypsum molding technique was used.

  • PDF

Effect of location of glass fiber pre-impregnated with light-curing resin on the fracture strength and fracture modes of a maxillary complete denture (광중합형 레진에 함침시킨 유리섬유의 위치가 상악 총의치의 파절강도와 파절양상에 미치는 영향)

  • Yoo, Hyun-Sang;Sung, Su-Jin;Jo, Jae-Young;Lee, Do-Chan;Huh, Jung-Bo;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.279-284
    • /
    • 2012
  • Purpose: This study evaluated the effect of glass fiber pre-impregnated with light-curing resin on the fracture strength and fracture modes of a maxillary complete denture. Materials and methods: Maxillary acrylic resin complete dentures reinforced with glass fiber pre-impregnated with light-curing resin (SES MESH, INNO Dental Co., Yeoncheongun, Korea) and without reinforcement were tested. The reinforcing material was embedded in the denture base resin and placed different regions (Control, without reinforcement; Group A, center of anterior ridge; Group B, rugae area; Group C, center of palate; Group D, full coverage of denture base). The fracture strength and fracture modes of a maxillary complete denture were tested using Instron test machine (Instron Co., Canton, MA, USA) at a 5.0 mm/min crosshead speed. The flexure load was applied to center of denture with a 20 mm diameter ball attachment. When fracture occurred, the fracture mode was classified based on fracture lines. The data were analyzed with one-way ANOVA at the significance level of 0.05. Results: There were non-significant differences (P>.05) in the fracture strength among test groups. Group A showed anteroposterior fracture and posterior fracture mainly, group B, C and control group showed partial fracture on center area mostly. Most specimen of group D showed posterior fracture. Conclusion: The location and presence of the fiber reinforcement did not affect the fracture strength of maxillary complete denture. However, reinforcing acrylic resin denture with glass fiber has a tendency to suppress the crack.