• Title/Summary/Keyword: Acrylate Monomers

Search Result 115, Processing Time 0.032 seconds

Synthesis of Acrylic Resins Containing Caprolactone Group and 80% Solid Contents for High-Solid Coatings (하이솔리드 도료용 카프로락톤기 함유 80% 고형분인 아크릴수지의 합성)

  • Park, Hong-Soo;Jo, Hye-Jin;Shim, Il-Woo;Jung, Choong-Ho;Kim, Young-Geun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.85-91
    • /
    • 2006
  • Acrylic resins (HSCs : EA/EMA/2-HEMA/CLA) which contain 80% solid content were synthesized by the copolymerization of monomers (ethyl acrylate, ethyl methacrylate, 2-hydroxyethyl methacrylate) and functional monomer (caprolactone acrylate : CLA) which improves the crosslinking density and physical properties of films. The physical properties of the prepared acrylic resins (HSCs) containing CLA, are as follows: viscosity 1440$^{\sim}$2630 cps ; $M_n$ 1590$^{\sim}$1660 ; and conversions, 81$^{\sim}$86%, respectively. From the correlation of $T_g$ values, viscosities, and $M_n$ of the HSCs, it was found thst viscosity and $M_n$ increased with $T_g$ value.

Optimum Synthesis Condition of Acrylic Resins for High-Solid Coatings Containing Caprolactone Group (Caprolactone기 함유 하이솔리드 도료용 아크릴수지의 최적 합성조건)

  • Chung, Dong-Jin;You, Hyuk-Jae;Kim, Seong-Kil;Kim, Myung-Soo;Park, Hong-Soo;Kim, Tae-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.197-203
    • /
    • 2004
  • Acrylic resins ($HSC_s$ : EA/EMA/2-HEMA/CLA) which contain 70% solid content were synthesized by the copolymerization of monomers (2-hydroxyethyl methacrylate, ethyl acrylate, and ethyl methacrylate) and functional monomer (caprolactone acrylate : CLA) which improves the crosslinking density and physical properties of films. The physical properties of the prepared acrylic resins (HSCs) containing CLA, are as follows : viscosity 245${\sim}$515 cps ; $M_n$ 2670${\sim}$2840 ; and conversions, 83${\sim}$91%, respectively. From the correlation of $T_g$ values, viscosities, and $M_n$ of the HSCs, it was found that viscosity and $M_n$ increased with $T_g$ value.

EVALUATION OF A PENETRATION-REINFORCING AGENT TO PREVENT THE AGING OF CONCRETE

  • Cho, Myung-Sug;Noh, Jea-Myoung;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1127-1134
    • /
    • 2009
  • Concrete has three major properties after a penetration-reinforcing agent is applied on its surface. First, the durability is improved by the sol-gel process of synthesized material from the polycondensation of TEOS (tetra-ethoxyorthosilicate) and acrylate monomer. Second, the capability to absorb impact energy is reinforced through the formation of a soft and flexible layer of organic monomers by Tea (Tetra Ethyl Amin). Third, the capability to prevent deterioration is enhanced by adding isobutyl-orthosilicate and alcohol. The performance and application of an agent developed through the synthesis of organic and inorganic material in an effort to prevent concrete from deterioration and improve the durability of concrete structures were verified in diverse experiments. The results of these experiments showed that the application of the proposed penetration-reinforcing agent has the effect of increasing the compressive strength by filling up the internal pores of concrete with physically and chemically stable compounds after penetrating the concrete. It also improves the durability against the deterioration factors such as salt water damage, carbonation, freezing and thawing, and compound deterioration. Therefore, it is confirmed that the penetration-reinforcing agent is a useful substance for the management and repair of concrete structures.

A Study on Synthesis and Properties of Acrylic Rubber (아크릴 고무의 합성과 물성에 대한 연구)

  • Cho, Ur-Ryong;Lee, Ki-Mun
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.308-314
    • /
    • 2009
  • The acrylic rubber was synthesized by emulsion polymerization using n-butyl acrylate, n-butyl methacrylate, acrylonitrile, glycidylmethacrylate, and allyl methacrylate. When the contents of acrylonitrile were increased at fixed amount of crosslinking monomers, the Tg of polymers was increased with the contents of acrylonitrile, Mooney viscosity, hardness, and tensile strength also were increased. But the elongation was decreased due to the reduction of chain flexibility. The addition of the monomer for crosslinking, glycidylmethacrylate whose Tg is $56^{\circ}C$ resulted in the increased Tg of the polymer, and increased Mooney viscosity, hardness, and tensile strength, but the elongation at break was decreased with the glycidylmethacrylate contents. It was shown that this phenominon was attributed to the increment of crosslinking density by glycidylmethacrylate through the measurement of rheometer.

A Study on the Synthesis and Properties of Environmental Friendly Pressure Sensitive Adhesive for Manufacturing Electronic Products (전자제품 제조용 친환경 점착제의 합성과 물성에 대한 연구)

  • Cho, Ur Ryong;Oh, Ji Hwan;Kim, Ji Hyun;Jung, Hyeon Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.12-16
    • /
    • 2016
  • Toluene-free pressure sensitive adhesives were synthesized by using butyl acrylate (BA), 2-hydroxy ethyl acrylate, methyl methacrylate, acrylic acid (AA) as monomers and ethyl acetate as a solvent. The polymerization recipes were designed by changing 1, 3, 5 part per hundreds monomer (phm) of AA content on the basis of 100 BA parts. Two crosslinking agents, ethyl glycol diglycidyl ether (EDGE) and isophorone diisocyanate (IPDI) were added to the synthesized polymers to increase adhesion due to crosslinking. In the measurement of properties, holding power, peel strength, and initial tackiness increased with AA content due to crosslinking between carboxyl group in AA and epoxy group in EDGE and isocyanate group in IPDI. In the comparison of two crosslinking agents, EDGE showed better in the three properties than IPDI by better reaction of epoxy group of EDGE to carboxyl group of AA.

A Study on the Application to Anti-corrosive Film of Acryl Emulsion for the Reducing of Environmental Pollutants (환경유해물질 저감을 위한 Acryl emulsion의 방청필름 응용 연구)

  • Lee, S.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.197-202
    • /
    • 2009
  • The high toxicity of wax, oil, varnish and volatile corrosion inhibitor(VCI) corrosion inhibitors lead to an increasing interest in using non-toxic alternatives such as anti-corrosive film. This study aims to investigate the possibility to use acryl based anti-corrosive film as a substitution of toxic corrosion inhibitors. Acryl emulsions were polymerized by several acryl monomers(acrylonitrile(AN), n-butyl acrylate(nBA), methylmethacrylate(MMA) and glycycyl methacrylate(GMA)), non-toxic corrosion inhibitor, crosslinking agents(diethylene glycol dimethacrylate(DEGDA)) and various additives in order to apply substrate of anti-corrosive film. Acryl emulsion for anti-corrosive film(AeACF) as a substrate of corrosion inhibitor film has excellent removal characteristic at above $25^{\circ}C$. The crosslinked by DEGDA in a range of above 4 wt% content anti-corrosive film can easily remove from the metal surface by using hands because it kept a balance of cohesion and adhesion strength. Anti - corrosive performance of AeACF is better than anti-corrosive oil by corrosion rate test, which was measured $54.3mg/dm^2$ day(MDD) and $142.9mg/dm^2$ day, respectively. Anti-corrosive film consisting of acryl monomers and inorganic anti-corrosive ingredients did not emit any toxic pollutants by gas chromatography. Thus it is estimated that acryl based anti-corrosion film can substitute toxic corrosion inhibitors.

Synthesis and Adhesion Characteristics of Water-Borne Acrylic Pressure Sensitive Adhesives(PSAs) (수계형 아크릴 점착제의 합성 및 점착 특성)

  • Hahm, Hyun-Sik;Kwak, Yun-Chul;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Removable protective adhesives for automobiles were synthesized by an emulsion polymerization of monomers such as n-butyl acrylate (BA), n-butyl methacrylate (BMA), acrylonitrile (AN), acrylic acid (AA) and 2-hydroxyethyl methacrylate (2-HEMA), in which AA and 2-HEMA were functional monomers. Potassium persulfate (KPS) was used as an initiator and sodium lauryl sulfate (SLS) was used as an emulsifier, and polyvinyl alcohol (PVA) was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch type reactor. Tensile strength, extension, peel strength, viscosity and solid content of the synthesized adhesives were tested. The optimum physical properties of the removable protective adhesives for automobiles were obtained with the composition of 0.43 mole BA, 0.57 mole AN, 0.21 mole BMA, 0.03 mole AA, and 0.03 mole 2-HEMA.

Synthesis of Modified Silane Acrylic Resins and Their Physical Properties as Weather-Resistant Coatings

  • Yoo, Gyu-Yeol;Kim, Ji-Hyun;Park, Hong-Soo;Kim, Young-Geun;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • To prepare weather-resistant modified silane acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The composition of monomers was adjusted to fix the glass transition temperature of acrylic polymer for $20^{\circ}C$. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects on weatherability were examined. The presence of MPTS in modified silane acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the modified silane acrylic resins containing 30 wt% of MPTS had superior weathering properties.

Color Strength and Fastness of Pigment Ink with Various Binder Monomer Compositions (바인더의 공중합체 조성에 따른 안료잉크의 발색성 및 견뢰도 연구)

  • Kwon, Woong;Lee, Minkyu;Jeong, Euigyung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.256-263
    • /
    • 2018
  • The binder polymers for digital textile printing(DTP) pigment inks were prepared using miniemulsion polymerization with various monomer compositions to study effects of monomer compositions on particle size distribution, average molecular weight, Tg, and color strength and rubbing fastness of the dyed fabrics with the prepared binder based pigment ink. The monomers used were MMA(Methyl methacrylate), BA(Butyl acrylate), MAA(Methacrylic acid), NMA(N-methylol acrylamide), NEA(N-ethylol acrylamide) and the ratios of the monomers were changed. The particle size was the smallest with 136nm when the MMA to BA weight ratio was 4:16 and the largest with 290nm when the MMA, BA, MAA, NEA ratio was 2.5:17:0.25:0.25. However, the glass transition temperature was lowest with $-41.90^{\circ}C$ and the color strength and rubbing fastness of the resulting sample were the best when the MMA, BA, MAA, NEA ratio was used. This suggested that the introduction of the NEA monomer to the binder polymer for the pigment ink could be an efficient way to enhance the rubbing fastness of the DTP pigment inks present.

Investigation on Rubbing Fastness of Pigment Ink with Polymer Binders having Various Comonomer Compositions (바인더 단량체 조성 변화에 따른 안료 잉크의 마찰견뢰도 연구)

  • Han, Minwoo;Kwon, Woong;Jeong, Euigyung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.77-87
    • /
    • 2019
  • To improve rubbing fastness of the printed fabrics, the binder polymers for Digital Textile Printing(DTP) pigment inks were synthesized with miniemulsion polymerization using various acrylic monomers, which are MMA(Methyl methacrylate), BA(Butyl acrylate), and Self-crosslinking monomers, such as NEA(N-Ethylol acrylamide) and MAA (Methacrylic acid). The acrylic monomer compositions were varied when synthesizing the binder polymers and their particle size distributions, average molecular weights, and Tgs were investigated. The prepared binder polymers were applied to prepare Cyan, Black, Yellow and Magenta pigment ink for DTP and the prepared inks were used to dye cotton fabrics. Then, color strength, and rubbing fastness were also investigated to study the effect of the comonomer compositions of the binder polymer on the color strength and rubbing fastness of the resulting pigment inks.